首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burian J  Ausió J  Phipps B  Moore S  Dougan D  Kay W 《Biochemistry》2003,42(34):10282-10287
The Escherichia coli plasmid pKL1 is one of the smallest bacterial plasmids. It encodes a single, autoregulating structural gene, repA, responsible for replication and copy number control. The oligomerization of RepA was previously proposed as the basis of a strategy for pKL1 copy number control. To elucidate the oligomerization properties of RepA in solution, RepA was expressed in E. coli; purified by ion exchange and hydrophobic chromatography; and examined in solution by spectrapolarimetry, light scattering, sedimentation velocity, and equilibrium ultracentrifugation. RepA behaved as a concentration-dependent equilibrium of dimers and hexamers. Conformational parameters of the RepA hexameric complex were determined. These results support the proposed autogenous regulatory model whereby RepA hexamers negatively regulate repA expression thereby affecting the copy number control of pKL1. RepA of pKL1 is the first plasmid replication initiation protein documented to be in dimeric-hexameric forms.  相似文献   

2.
B J Froehlich  J R Scott 《Plasmid》1988,19(2):121-133
P1 and P7 are closely related plasmid prophages which are members of the same incompatibility group. We report the complete DNA sequence of the replication region of P7 and compare it to that of P1. The sequence predicts a single amino acid difference between the RepA proteins of these two plasmids, no differences in methylation sites or regions where dnaA protein is expected to bind, and no difference in the spacing of the major features of the two replicons. A P1 replicon with a mutation in repA, the gene that encodes an essential replication protein, is complemented for replication by providing either the P1 RepA protein (RepA1) or the P7 RepA protein (RepA7) in trans. Furthermore, when either of these proteins is supplied in trans, the plasmid copy number of P1 cop mutants drops to that of P1 cop+. However, when RepA7 is supplied, the copy number of P1 cop and P1 cop+ is higher than that when RepA1 is supplied. This indicates that the single amino acid difference between the two versions of the RepA protein plays an important role in determining the plasmid copy number.  相似文献   

3.
Nucleotide sequence analysis of mini-Rts1 and its copy mutant disclosed the presence of two clusters of direct-repeat sequences flanking the coding region for the 33,000-dalton RepA protein and two base substitutions on the mini-Rts1cop1 genome (Kamio et al., J. Bacteriol. 158:307-312, 1984). On subcloning of the left cluster (incI) that is located downstream from repA, the five 24-base-pair repeats expressed a stronger incompatibility toward mini-Rts1 than did the four repeats. The right cluster (incII) that contains three 21-base-pair repeats also exhibited strong incompatibility toward mini-Rts1. By separating the two base substitutions of mini-Rts1cop1, the mutation that is responsible for the copy increase was determined to be a single base change in the RepA coding region. Both clusters of the repeats, cloned separately into the vector plasmid, showed a weaker incompatibility toward mini-Rts1cop1 than to the wild-type mini-Rts1. These findings suggest a lowered binding affinity of the mutated RepA protein to the direct repeats.  相似文献   

4.
Y Terawaki  Z Hong  Y Itoh    Y Kamio 《Journal of bacteriology》1988,170(3):1261-1267
RepA protein, essential for replication of plasmid Rts1, was found to bind in vivo immediately upstream of the repA promoter in studies with mini-Rts1 derivatives with deletions in the upstream region of repA. We constructed another series of repA mutants that would encode RepA derivatives containing oligopeptide substitutions in place of the carboxyl-terminal six amino acids. These modified RepA proteins could not activate ori (Rts1) at all and showed various degrees of incompatibility, or no incompatibility, toward a mini-Rts1 plasmid. These results suggest that the carboxyl-terminal six (or fewer) amino acids of RepA are important for exerting replication and incompatibility functions. One of the RepA derivatives, which showed an evident incompatibility without initiating replication, was examined for its ability to repress the repA gene.  相似文献   

5.
6.
7.
The genetic determinants for replication and incompatibility of plasmid R1 were investigated by gene cloning methods, and three types of R1 miniplasmid derivatives were generated. The first, exemplified by plasmid pKT300, consisted of a single BglII endonuclease-generated deoxyribonucleic acid fragment derived from the R1 region that is located between the determinants for conjugal transfer and antibiotic resistance. Two types of miniplasmids could be formed from PstI endonuclease-generated fragments of pKT300. One of these, which is equivalent to miniplasmids previously generated from plasmids R1-19 and R1-19B2, consisted of two adjacent PstI fragments that encode the RepA replication system of plasmid R1. The other type contained a segment of R1, designated the RepD replication region, that is adjacent to the RepA region and that has not been identified previously as having the capacity for autonomous replication. Plasmid R1, therefore, contained two distinct deoxyribonucleic acid segments capable of autonomous replication. The RepA-RepD miniplasmid pKT300 had a copy number about eightfold higher than that of R1 and hence lacked a determinant for the regulation of plasmid copy number. Like R1, it was maintained stably in dividing bacteria. RepA miniplasmids had copy numbers which were two- to fourfold higher than that of R1 (i.e., which were lower than that of pKT300) and were maintained slightly less stably than those of pKT300 and R1. The RepD miniplasmid was not maintained stably in dividing bacteria. Previous experiments have shown that incompatibility of IncFII group plasmids is specified by a plasmid copy control gene. Despite the fact that RepA miniplasmids of R1 were defective in copy control, they nevertheless expressed incompatibility. This suggests that two genes are responsible for plasmid copy control, one that specifies incompatibility and is located on RepA miniplasmids and another that is located outside of, but adjacent to, the RepA replication region. Hybrid plasmids composed of pBR322 and one PstI fragment from the RepA region, P-8, exhibited incompatibility towards R2 and RepA miniplasmids but not the RepD miniplasmid, whereas hybrids composed of pBR322 and the PstI fragment of the RepD region, P-3, exhibited incompatibility towards R1 and the RepD miniplasmid but not RepA miniplasmids. These results indicate that the two replication systems are functionally distinct and that, although the RepA system is the principal replication system of R1, the RepD system also plays a role in the maintenance of this plasmid.  相似文献   

8.
We constructed a system in which wild-type RepA or RepAcop1 protein was supplied in trans in various amounts to coexisting mini-Rts1 plasmids by clones of the repA or repAcop1 gene under the control of the native promoter with or without its operator sequence. RepAcop1 protein which contains a single amino acid substitution (Arg-142 to Lys) within its 288 amino acids could initiate the replication of the mini-Rts1 plasmid efficiently at both 37 and 42 degrees C even if it was supplied in excess. In contrast, excess wild-type RepA inhibited plasmid replication at 37 degrees C but supported replication at 42 degrees C. Therefore, it appears that the initiator activity of RepA is not related to the incompatibility phenotype associated with an excess of RepA protein. An immunoblot analysis revealed that neither RepA nor RepAcop1 synthesis was temperature sensitive and that both were autogenously regulated to a similar extent because of the presence of an operator located immediately upstream of the promoter. Two mutant RepA proteins, each of which contains a 4-amino-acid insertion in the middle of the protein, maintained the autorepressor and incompatibility activities but lost the ori(Rts1)-activating function.  相似文献   

9.
10.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

11.
12.
13.
The replicon of the low copy number plasmid P1 uses the three Escherichia coli heat shock proteins DnaJ, DnaK, and GrpE for the efficient initiation of its DNA replication. The only P1-encoded protein required for plasmid replication is the initiator, RepA. Binding of RepA to the origin also represses the promoter for the repA gene, which is located within the origin. We found that repression is incomplete in E. coli strains with mutations in the dnaJ, dnaK, or grpE genes. Since there is no decrease in RepA concentration in the mutant strains, the mutations are likely to affect the protein-DNA or protein-protein reactions required for repression, thereby decreasing RepA binding at its promoter. We also showed that the deficit in repression can be overcome by providing excess RepA, implying that the mechanism of repression is not altered in the mutant strains. Since repression requires RepA binding to the origin, a binding deficit might account for the replication defect in the heat shock mutants.  相似文献   

14.
H Zeng  T Hayashi    Y Terawaki 《Journal of bacteriology》1990,172(5):2535-2540
We induced site-directed mutations near the 3' terminus of the gene repA, which encodes the protein of 288 amino acid residues essential for plasmid Rts1 replication, and obtained seven repA mutants. Three of them contained small deletions at the 3' terminus. Mutant repAz delta C4, which encodes a RepA protein that lacks the C-terminal four amino acids, expressed a high-copy-number phenotype and had lost both autorepressor and incompatibility functions. Deletion of one additional amino acid residue to form the RepAz delta C5 protein caused restoration of the wild-type copy number and strong incompatibility. Studies of the remaining four repA mutants, each of which contained a single amino acid substitution near the RepA C terminus, suggested that Lys-268 is involved in both ori(Rts1) activation and autorepressor-incompatibility activities and that Arg-279 contributes to ori(Rts1) activation but not to incompatibility. Lys-268 is part of a dual-lysine sequence with Lys-267 and is located 21 amino acids upstream of the RepA C terminus. A dual-lysine sequence is also found at a similar position in both mini-F RepE and mini-P1 RepA proteins.  相似文献   

15.
16.
The hemolysin-determining plasmid pAD1 is a member of a widely disseminated family of highly conjugative elements commonly present in clinical isolates of Enterococcus faecalis. The determinants repA, repB, and repC, as well as adjacent iteron sequences, are believed to play important roles in pAD1 replication and maintenance. The repA gene encodes an initiator protein, whereas repB and repC encode proteins related to stability and copy number. The present study focuses specifically on repA and identifies a replication origin (oriV) within a central region of the repA determinant. A small segment of repA carrying oriV was able to support replication in cis of a plasmid vector otherwise unable to replicate, if an intact RepA was supplied in trans. We demonstrate that under conditions in which RepA is expressed from an artificial promoter, a segment of DNA carrying only repA is sufficient for stable replication in E. faecalis. We also show that RepA binds specifically to oriV DNA at several sites containing inverted repeat sequences (i.e., IR-1) and nonspecifically to single-stranded DNA, and related genetic analyses confirm that these sequences play an important role in replication. Finally, we reveal a relationship between the internal structure of RepA and its ability to recognize oriV. An in-frame deletion within repA resulting in loss of 105 nucleotides, including at least part of oriV, did not eliminate the ability of the altered RepA protein to initiate replication using an intact origin provided in trans. The relationship of RepA to other known initiator proteins is also discussed.  相似文献   

17.
Although plasmid copy number varies widely among different plasmid species, normally copy number is maintained within a narrow range for any given plasmid. Such copy number control has been shown to occur by regulation of the rate of plasmid DNA replication. Here we report a novel mechanism by which the pSC101 plasmid also can detect an imbalance between the cellular level of its replication protein, RepA, and plasmid-borne RepA binding sites to inhibit bacterial DNA replication and delay host cell division when RepA is in relative excess. We show that delayed cell division occurs by RepA-mediated induction of the SOS response and can be reversed by over-expression of the host DNA primase, DnaG. The effects of RepA excess are prevented by introducing a surfeit of RepA binding sites. The mechanism reported here may help to limit variation in plasmid copy number and allow repopulation of cells with plasmids when copy number falls--potentially pre-empting plasmid loss in cultures of dividing cells.  相似文献   

18.
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.  相似文献   

19.
Summary We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.  相似文献   

20.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号