首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51–ssDNA filaments. RECQ5 interacts with RAD51 through protein–protein contacts, and disruption of this interface through a RECQ5–F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51–K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51–I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.  相似文献   

2.
The Saccharomyces cerevisiae RAD51 gene product takes part in genetic recombination and repair of DNA double strand breaks. Rad51, like Escherichia coli RecA, catalyzes strand exchange between homologous circular single-stranded DNA (ssDNA) and linear double-stranded DNA (dsDNA) in the presence of ATP and ssDNA-binding protein. The formation of joint molecules between circular ssDNA and linear dsDNA is initiated at either the 5' or the 3' overhanging end of the complementary strand; joint molecules are formed only if the length of the overhanging end is more than 1 nucleotide. Linear dsDNAs with recessed complementary or blunt ends are not utilized. The polarity of strand exchange depends upon which end is used to initiate the formation of joint molecules. Joint molecules formed via the 5' end are processed by branch migration in the 3'-to-5' direction with respect to ssDNA, and joint molecules formed with a 3' end are processed in the opposite direction.  相似文献   

3.
RecA and Rad51 proteins play an important role in DNA repair and homologous recombination. For RecA, X-ray structure information and single molecule force experiments have indicated that the differential extension between the complementary strand and its Watson–Crick pairing partners promotes the rapid unbinding of non-homologous dsDNA and drives strand exchange forward for homologous dsDNA. In this work we find that both effects are also present in Rad51 protein. In particular, pulling on the opposite termini (3′ and 5′) of one of the two DNA strands in a dsDNA molecule allows dsDNA to extend along non-homologous Rad51-ssDNA filaments and remain stably bound in the extended state, but pulling on the 3′5′ ends of the complementary strand reduces the strand-exchange rate for homologous filaments. Thus, the results suggest that differential extension is also present in dsDNA bound to Rad51. The differential extension promotes rapid recognition by driving the swift unbinding of dsDNA from non-homologous Rad51-ssDNA filaments, while at the same time, reducing base pair tension due to the transfer of the Watson–Crick pairing of the complementary strand bases from the highly extended outgoing strand to the slightly less extended incoming strand, which drives strand exchange forward.  相似文献   

4.
Genetic evidence suggests that the SPP1-encoded gene 35 product (G35P) is essential for phage DNA replication. Purified G35P binds single-strand DNA (ssDNA) and double-strand (dsDNA) and specifically interacts with SPP1-encoded replicative DNA helicase G40P and SSB protein G36P. G35P promotes joint molecule formation between a circular ssDNA and a homologous linear dsDNA with an ssDNA tail. Joint molecule formation requires a metal ion but is independent of a nucleotide cofactor. Joint molecules formed during these reactions contain a displaced linear ssDNA strand. Electron microscopic analysis shows that G35P forms a multimeric ring structure in ssDNA tails of dsDNA molecules and left-handed filaments on ssDNA. G35P promotes strand annealing at the AT-rich region of SPP1 oriL on a supercoiled template. These results altogether are consistent with the hypothesis that the homologous pairing catalyzed by G35P is an integral part of SPP1 DNA replication. The loading of G40P at a d-loop (ori DNA or at any stalled replication fork) by G35P could lead to replication fork reactivation.  相似文献   

5.
Human Rad51 (hRad51), the protein central to DNA pairing and strand exchange during homologous recombination, polymerizes on DNA to form nucleoprotein filaments. By making use of magnetic tweezers to manipulate individual DNA molecules, we measured the nucleation and growth of hRad51 nucleoprotein filaments, and their subsequent disassembly in real time. The dependence of the initial polymerization rate upon the concentration of hRad51 suggests that the rate-limiting step is the formation of a nucleus involving 5.5 ± 1.5 hRad51 monomers, corresponding to one helical turn of the hRad51 nucleoprotein filament. Polymerization is highly cooperative (i.e. a nucleation-limited reaction) at low concentrations and less cooperative (a growth-limited reaction) at high concentrations of the protein. We show that the observed preference of hRad51 to form nucleoprotein filaments on double-stranded DNA rather than on single-stranded DNA is due to the fact that it depolymerizes much faster from ssDNA than from dsDNA: indeed, hRad51 polymerizes faster on ssDNA than on dsDNA. Hydrolysis of ATP by hRad51 does not correlate with its dissociation from dsDNA. This suggests that hRad51 does not depolymerize rapidly from dsDNA after strand exchange but stays bound to the heteroduplex, highlighting the importance of partner proteins to facilitate hRad51 depolymerization from dsDNA.  相似文献   

6.
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.  相似文献   

7.
RAD51 is the central strand exchange recombinase in somatic homologous recombination, providing genomic stability and promoting resistance to DNA damage. An important tool for mechanistic studies of RAD51 is the D-loop or strand assimilation assay, which measures the ability of RAD51-coated single-stranded DNA (ssDNA) to search for, invade and exchange ssDNA strands with a homologous duplex DNA target. As cancer cells generally overexpress RAD51, the D-loop assay has also emerged as an important tool in oncologic drug design programs for targeting RAD51. Previous studies have adapted the traditional gel-based D-loop assay by using fluorescence-based substrates, which in principle allow for use in high-throughput screening platforms. However, these existing D-loop methods depend on linear oligonucleotide DNA duplex targets, and these substrates enable recombinase-independent ssDNA annealing that can obscure the recombinase-dependent strand assimilation signal. This compelled us to fundamentally re-design this assay, using a fluorescent target substrate that consists of a covalently closed linear double-hairpin dsDNA. This new microplate-based method represents a fast, inexpensive and non-radioactive alternative to existing D-loop assays. It provides accurate kinetic analysis of strand assimilation in high-throughput and performs well with human RAD51 and Escherichia coli RecA protein. This advance will aid in both mechanistic studies of homologous recombination and drug screening programs.  相似文献   

8.
Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2–MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1−/− spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2–MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis.  相似文献   

9.
The human DNA repair protein RAD51 is the crucial component of helical nucleoprotein filaments that drive homologous recombination. The molecular mechanistic details of how this structure facilitates the requisite DNA strand rearrangements are not known but must involve dynamic interactions between RAD51 and DNA. Here, we report the real-time kinetics of human RAD51 filament assembly and disassembly on individual molecules of both single- and double-stranded DNA, as measured using magnetic tweezers. The relative rates of nucleation and filament extension are such that the observed filament formation consists of multiple nucleation events that are in competition with each other. For varying concentration of RAD51, a Hill coefficient of 4.3 ± 0.5 is obtained for both nucleation and filament extension, indicating binding to dsDNA with a binding unit consisting of multiple (4) RAD51 monomers. We report Monte Carlo simulations that fit the (dis)assembly data very well. The results show that, surprisingly, human RAD51 does not form long continuous filaments on DNA. Instead each nucleoprotein filament consists of a string of many small filament patches that are only a few tens of monomers long. The high flexibility and dynamic nature of this arrangement is likely to facilitate strand exchange.  相似文献   

10.
Homologous recombination (HR) is a primary DNA double-strand breaks (DSBs) repair mechanism. The recombinases Rad51 and Dmc1 are highly conserved in the RecA family; Rad51 is mainly responsible for DNA repair in somatic cells during mitosis while Dmc1 only works during meiosis in germ cells. This spatiotemporal difference is probably due to their distinctive mismatch tolerance during HR: Rad51 does not permit HR in the presence of mismatches, whereas Dmc1 can tolerate certain mismatches. Here, the cryo-EM structures of Rad51–DNA and Dmc1–DNA complexes revealed that the major conformational differences between these two proteins are located in their Loop2 regions, which contain invading single-stranded DNA (ssDNA) binding residues and double-stranded DNA (dsDNA) complementary strand binding residues, stabilizing ssDNA and dsDNA in presynaptic and postsynaptic complexes, respectively. By combining molecular dynamic simulation and single-molecule FRET assays, we identified that V273 and D274 in the Loop2 region of human RAD51 (hRAD51), corresponding to P274 and G275 of human DMC1 (hDMC1), are the key residues regulating mismatch tolerance during strand exchange in HR. This HR accuracy control mechanism provides mechanistic insights into the specific roles of Rad51 and Dmc1 in DNA double-strand break repair and may shed light on the regulatory mechanism of genetic recombination in mitosis and meiosis.  相似文献   

11.
P Baumann  S C West 《The EMBO journal》1997,16(17):5198-5206
The human Rad51 protein is homologous to the RecA protein and catalyses homologous pairing and strand transfer reactions in vitro. Using single-stranded circular and homologous linear duplex DNA, we show that hRad51 forms stable joint molecules by transfer of the 5' end of the complementary strand of the linear duplex to the ssDNA. The polarity of strand transfer is therefore 3' to 5', defined relative to the ssDNA on which hRad51 initiates filament formation. This polarity is opposite to that observed with RecA. Homologous pairing and strand transfer require stoichiometric amounts of hRad51, corresponding to one hRad51 monomer per three nucleotides of ssDNA. Joint molecules are not observed when the protein is present in limiting or excessive amounts. The human ssDNA binding-protein, hRP-A, stimulates hRad51-mediated reactions. Its effect is consistent with a role in the removal of secondary structures from ssDNA, thereby facilitating the formation of continuous Rad51 filaments.  相似文献   

12.
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.  相似文献   

13.
Double-strand breaks (DSB) occur in chromatin following replication fork collapse and chemical or physical damage [Symington and Gautier (Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247–271.)] and may be repaired by homologous recombination (HR) and non-homologous end-joining. Nucleosomes are the fundamental units of chromatin and must be remodeled during DSB repair by HR [Andrews and Luger (Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 2011;40:99–117.)]. Physical initiation of HR requires RAD51, which forms a nucleoprotein filament (NPF) that catalyzes homologous pairing and strand exchange (recombinase) between DNAs that ultimately bridges the DSB gap [San Filippo, Sung and Klein. (Mechanism of eukaryotic HR. Annu. Rev. Biochem. 2008;77:229–257.)]. RAD51 forms an NPF on single-stranded DNA and double-stranded DNA (dsDNA). Although the single-stranded DNA NPF is essential for recombinase initiation, the role of the dsDNA NPF is less clear. Here, we demonstrate that the human RAD51 (HsRAD51) dsDNA NPF disassembles nucleosomes by unwrapping the DNA from the core histones. HsRAD51 that has been constitutively or biochemically activated for recombinase functions displays significantly reduced nucleosome disassembly activity. These results suggest that HsRAD51 can perform ATP hydrolysis-dependent nucleosome disassembly in addition to its recombinase functions.  相似文献   

14.
Homologous recombination provides a major pathway for the repair of DNA double-strand breaks in mammalian cells. Defects in homologous recombination can lead to high levels of chromosomal translocations or deletions, which may promote cell transformation and cancer development. A key component of this process is RAD51. In comparison to RecA, the bacterial homologue, human RAD51 protein exhibits low-level strand-exchange activity in vitro. This activity can, however, be stimulated by the presence of high salt. Here, we have investigated the mechanistic basis for this stimulation. We show that high ionic strength favours the co-aggregation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments with naked duplex DNA, to form a complex in which the search for homologous sequences takes place. High ionic strength allows differential binding of RAD51 to ssDNA and double-stranded DNA (dsDNA), such that ssDNA-RAD51 interactions are unaffected, whereas those between RAD51 and dsDNA are destabilized. Most importantly, high salt induces a conformational change in RAD51, leading to the formation of extended nucleoprotein filaments on ssDNA. These extended filaments mimic the active form of the Escherichia coli RecA-ssDNA filament that exhibits efficient strand-exchange activity.  相似文献   

15.
Rad51 and Rad54 are key proteins that collaborate during homologous recombination. Rad51 forms a presynaptic filament with ATP and ssDNA active in homology search and DNA strand exchange, but the precise role of its ATPase activity is poorly understood. Rad54 is an ATP-dependent dsDNA motor protein that can dissociate Rad51 from dsDNA, the product complex of DNA strand exchange. Kinetic analysis of the budding yeast proteins revealed that the catalytic efficiency of the Rad54 ATPase was stimulated by partial filaments of wild-type and Rad51-K191R mutant protein on dsDNA, unambiguously demonstrating that the Rad54 ATPase activity is stimulated under these conditions. Experiments with Rad51-K191R as well as with wild-type Rad51-dsDNA filaments formed in the presence of ATP, ADP or ATP-γ-S showed that efficient Rad51 turnover from dsDNA requires both the Rad51 ATPase and the Rad54 ATPase activities. The results with Rad51-K191R mutant protein also revealed an unexpected defect in binding to DNA. Once formed, Rad51-K191R-DNA filaments appeared normal upon electron microscopic inspection, but displayed significantly increased stability. These biochemical defects in the Rad51-K191R protein could lead to deficiencies in presynapsis (filament formation) and postsynapsis (filament disassembly) in vivo.  相似文献   

16.
RAD51 is a key factor in homologous recombination (HR) and plays an essential role in cellular proliferation by repairing DNA damage during replication. The assembly of RAD51 at DNA damage is strictly controlled by RAD51 mediators, including BRCA1 and BRCA2. We found that human RAD51 directly binds GEMIN2/SIP1, a protein involved in spliceosome biogenesis. Biochemical analyses indicated that GEMIN2 enhances the RAD51–DNA complex formation by inhibiting RAD51 dissociation from DNA, and thereby stimulates RAD51-mediated homologous pairing. GEMIN2 also enhanced the RAD51-mediated strand exchange, when RPA was pre-bound to ssDNA before the addition of RAD51. To analyze the function of GEMIN2, we depleted GEMIN2 in the chicken DT40 line and in human cells. The loss of GEMIN2 reduced HR efficiency and resulted in a significant decrease in the number of RAD51 subnuclear foci, as observed in cells deficient in BRCA1 and BRCA2. These observations and our biochemical analyses reveal that GEMIN2 regulates HR as a novel RAD51 mediator.  相似文献   

17.
To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.  相似文献   

18.
The RecA and SSB proteins will catalyze the joining of two DNA molecules containing homologous sequences but lacking homologous ends in a reaction termed paranemic joining. The absence of homologous ends can be achieved by (1) pairing two circular DNAs or (2) using linear DNA(s) with ends lacking homology to the pairing partner. Here we have used electron microscopy (EM) to examine such pairings. Circular M13 single-stranded (ss) DNA enveloped by RecA protein into a presynaptic filament was paired with linear M13mp7 double-stranded (ds) DNA containing non-M13 sequences at its ends. Joint complexes were frequently seen in which the dsDNA was joined with the presynaptic filament over several kilobase (10(3) bases) lengths of the dsDNA. In this region, the presynaptic filament appeared disorganized as contrasted to the customary helical structure of the filament containing only a single strand of DNA. The same ultrastructure, but with greater detail, was observed when the samples were prepared for EM without fixation using a new method of fast-freezing and freeze-drying. EM immunogold staining demonstrated the presence of SSB protein in the disorganized region containing all three strands, but not in the regular helically arranged region. Psoralen photo-crosslinking of the DNA in the joint complexes revealed that the three DNA strands were in close proximity only over a single short (200 to 300 base-pairs) region. The joining of nicked circular M13 dsDNA and presynaptic filaments containing circular M13 ssDNA resulted in the intertwining of the dsDNA about the circular presynaptic filament. The joints produced in this case were short, as was the single region of psoralen photo-crosslinking of the three DNA strands. A model of how these long three-stranded joints form is presented involving the movement of a short "true" paranemic joint along the presynaptic filament.  相似文献   

19.
Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson–Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.  相似文献   

20.
Rad54 protein is a member of the Swi2/Snf2-like family of DNA-dependent/stimulated ATPases that dissociate and remodel protein complexes on dsDNA. Rad54 functions in the recombinational DNA repair (RAD52) pathway. Here we show that Rad54 protein dissociates Rad51 from nucleoprotein filaments formed on dsDNA. Addition of Rad54 protein overcomes inhibition of DNA strand exchange by Rad51 protein bound to substrate dsDNA. Species preference in the Rad51 dissociation and DNA strand exchange assays underlines the importance of specific Rad54-Rad51 protein interactions. Rad51 protein is unable to release dsDNA upon ATP hydrolysis, leaving it stuck on the heteroduplex DNA product after DNA strand exchange. We suggest that Rad54 protein is involved in the turnover of Rad51-dsDNA filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号