首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Matrix metalloproteinases (MMPs) participate in remodeling the extracellular matrix and facilitate entry of inflammatory cells into tissues. Infection of the murine central nervous system (CNS) with a neurotropic coronavirus induces encephalitis associated with increased levels of mRNA encoding MMP-3 and MMP-12. Whereas virus-induced MMP-3 expression was restricted to CNS resident astrocytes, MMP-12 mRNA was expressed by both inflammatory cells and CNS resident cells. Immunosuppression increased both MMP-3 and MMP-12 mRNA levels in CNS resident cells, suggesting that the presence of virus rather than inflammation induced protease up-regulation. MMP activity is partially regulated by a small family of genes encoding tissue inhibitors of matrix metalloproteinases (TIMPs); among the TIMPs, only TIMP-1 mRNA expression increased in the CNS following coronavirus infection. During inflammation TIMP-1 mRNA was most prominently expressed by infiltrating cells. By contrast, in the immunosuppressed host TIMP-1 mRNA was expressed by CNS resident cells. Analysis of cytokine and chemokine mRNA induction within the infected CNS of healthy and immunocompromised mice suggested a possible correlation between increased viral replication and increased levels of beta interferon, MMP-3, MMP-12, and TIMP-1 mRNA. CD4+ T cells which localize to the perivascular and subarachnoid spaces were identified as the primary source of TIMP-1 protein. By contrast, protein expression was undetectable in astrocytes or CD8+ T cells, the primary antiviral effectors that localize to the CNS parenchyma in response to infection. These data suggest that in contrast to the results seen with MMPs, inhibition of protease activity via TIMP-1 expression correlates with the differential tissue distribution of T-cell subsets during acute coronavirus-induced encephalitis.  相似文献   

2.
Infection of the CNS (central nervous system) with a sublethal neurotropic coronavirus (JHMV) induces a vigorous inflammatory response. CD4+ and CD8+ T cells are essential to control infectious virus but at the cost of tissue damage. An enigma in understanding the contribution of T cell subsets in pathogenesis resides in their distinct migration pattern across the BBB (blood brain barrier). CD4+ T cells transiently accumulate within the perivascular space, whereas CD8+ T cells migrate directly into the CNS parenchyma. As MMPs (matrix metalloproteinases) facilitate migration across the glia limitans, specific expression of the TIMP (tissue inhibitor of MMPs)-1 by CD4+ T cells present in the perivascular cuffs suggested that TIMP-1 is responsible for stalling CD4+ T cell migration into the CNS parenchyma. Using TIMP-1 deficient mice, the present data demonstrate an increase rather than a decrease in CD4+ T cell accumulation within the perivascular space during JHMV infection. Whereas virus control was not affected by perivascular retention of CD4+ T cells, disease severity was decreased and associated with reduced IFNγ (interferon γ) production. Moreover, decreased CD4+ T cell recruitment into the CNS parenchyma of TIMP-1 deficient mice was not associated with impaired T cell recruiting chemokines or MMP expression, and no compensation by other TIMP molecules was identified. These data suggest an MMP-independent role of TIMP-1 in regulating CD4+ T cell access into the CNS parenchyma during acute JHMV encephalitis.  相似文献   

3.
The pathogenesis of human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is mediated mainly by mononuclear phagocyte (MP) secretory products and their interactions with neural cells. Viral infection and MP immune activation may affect leukocyte entry into the brain. One factor that influences central nervous system (CNS) monocyte migration is matrix metalloproteinases (MMPs). In the CNS, MMPs are synthesized by resident glial cells and affect the integrity of the neuropil extracellular matrix (ECM). To ascertain how MMPs influence HAD pathogenesis, we studied their secretion following MP differentiation, viral infection, and cellular activation. HIV-1-infected and/or immune-activated monocyte-derived macrophages (MDM) and human fetal microglia were examined for production of MMP-1, -2, -3, and -9. MMP expression increased significantly with MP differentiation. Microglia secreted high levels of MMPs de novo that were further elevated following CD40 ligand-mediated cell activation. Surprisingly, HIV-1 infection of MDM led to the down-regulation of MMP-9. In encephalitic brain tissue, MMPs were expressed within perivascular and parenchymal MP, multinucleated giant cells, and microglial nodules. These data suggest that MMP production in MP is dependent on cell type, differentiation, activation, and/or viral infection. Regulation of MMP expression by these factors may contribute to neuropil ECM degradation and leukocyte migration during HAD.  相似文献   

4.
The apicomplexan Toxoplasma gondii, an obligate intracellular parasite, can infect humans and a wide range of vertebrates. Following oral infection, the parasite invades tissues by crossing non-permissive biological barriers such as the placenta or the blood-brain barrier. But the molecular mechanisms underlying migration of T. gondii remain poorly characterized. The crossing of various basal membranes and infiltration into the extracellular matrix by T. gondii could involve matrix metalloproteinases (MMPs). We demonstrated a decrease in proMMP-2 and proMMP-9 secretion by THP-1 cells at 24 and 48h post invasion with regulation at the mRNA level throughout infection. This down regulation was associated with a decrease in TIMP-2 secretion and an inhibition of its expression. Moreover, results showed an activation of MT1-MMP; its expression was regulated after 6, 24, and 48h.  相似文献   

5.
Metalloproteinases (MPs) include matrix metalloproteinases (MMPs) and metalloproteinase-disintegrins (ADAMs). Their physiological inhibitors are tissue inhibitor of metalloproteinases (TIMPs). MPs are thought to be mediators of cellular infiltration in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant and >3-fold alteration in expression was observed for MMP-8, MMP-10, MMP-12, ADAM-12, and TIMP-1, which were up-regulated, and for MMP-15, which was down-regulated. Expression levels correlated with disease course, with all but ADAM-12 returning toward control levels in remission. To examine potential cellular sources of these strongly affected proteins in the inflamed CNS, we isolated macrophages, granulocytes, microglia, and T cells by cell sorting from the CNS of mice with EAE and analyzed their expression by real-time RT-PCR. This identified macrophages as a major source of MMP-12 and TIMP-1. Granulocytes were a major source of MMP-8. ADAM-12 was expressed primarily by T cells. Cellular localization of MMP-10, TIMP-1, and ADAM-12 in perivascular infiltrates was confirmed by immunostaining or in situ hybridization. Microglia from control mice expressed strong signal for MMP-15. Strikingly, the expression of MMP-15 by microglia was significantly down-regulated in EAE, which was confirmed by immunostaining. Our study identifies the cellular sources of key MPs in CNS inflammation.  相似文献   

6.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.  相似文献   

7.
Japanese encephalitis(JE) is a viral encephalitis disease caused by Japanese encephalitis virus(JEV) infection. Uncontrolled inflammatory responses in the central nervous system(CNS) are a hallmark of severe JE. Although the CCR2–CCL2 axis is important for monocytes trafficking during JEV infection, little is known about its role in CNS trafficking of CD8~+T cells. Here, we characterized a mouse model of JEV infection, induced via intravenous injection(i.v.) and delineated the chemokines and infiltrating peripheral immune cells in the brains of infected mice. The CNS expression of chemokines, Ccl2, Ccl3, and Ccl5, and their receptors, Ccr2 or Ccr5, was significantly up-regulated after JEV infection and was associated with the degree of JE pathogenesis. Moreover, JEV infection resulted in the migration of a large number of CD8~+T cells into the CNS. In the brains of JEV-infected mice, infiltrating CD8~+T cells expressed CCR2 and CCR5 and were found to comprise mainly effector T cells(CD44~+CD62 L~-). JEV infection dramatically enhanced the expression of programmed death 1(PD-1) on infiltrating CD8~+T cells in the brain, as compared to that on peripheral CD8~+T cells in the spleen. This effect was more pronounced on infiltrating CCR2~+CD8~+T cells than on CCR2-CD8~+T cells. In conclusion,we identified a new subset of CD8~+T cells(PD1~+CCR2~+CD8~+T cells) present in the CNS of mice during acute JEV infection. These CD8~+T cells might play a role in JE pathogenesis.  相似文献   

8.
The balance between matrix metalloproteinases (MMPs) and their physiological tissue inhibitors of matrix metalloproteinases (TIMPs) is crucial in tumour invasion and progression. The aim of this study was to investigate the levels of MMP-9, MMP-3 and TIMP-1 in colorectal cancer (CRC) and to evaluate these proteinases and their inhibitor with respect to clinicopathological variables. Activities of pro- and active MMP-9 were measured in paired tumour and distant normal tissue specimens from 43 patients with CRC using gelatin zymography. ELISA was employed for the determination of MMP-9, MMP-3 and TIMP-1 protein expressions. The activity levels of pro- and active MMP-9 and protein expression levels of MMP-9, MMP-3 and TIMP-1 were higher in tumour tissues than in the corresponding normal tissues; the differences being significant for all (p < 0.05), except TIMP-1. Similarly, active MMP-9/proMMP-9 and the ratio of protein expression level of MMP-9-TIMP-1 were found to be significantly higher in tumour tissues ( p < 0.01). Among all the clinicopathological variables investigated, significant correlations were found between MMP-9 and presence of perineural invasion, MMP-3 and lymph node status, TIMP-1 and tumour differentiation, MMP-9/TIMP-1 ratio and histological types ( p < 0.05). In conclusion, MMP-3 was not as notably increased as MMP-9 in tumour tissues. However, different roles may be attributed to MMP-9 and MMP-3 in CRC development and progression. Additionally, assessment of TIMP-1 in relation to MMPs appeared to be crucial in CRC studies to provide a basis for the re-evaluation of the clinical usefulness of TIMP-1 in colorectal cancer.  相似文献   

9.
Toxoplasma gondii KI-1, a recent new isolate from Korea, shows similar pathogenicity and infectivity to mice compared to the virulent RH strain. To understand characteristics of host immunity, including immune enhancement or suppression, we investigated proliferative responses and phenotypes of spleen cells. In addition, kinetics of IFN-γ, a Th1 cytokine, was examined in BALB/c mice up to day 6 post-infection (PI). Intraperitoneal injection of mice with 10(3) KI-1 tachyzoites induced significant decreases (P < 0.05) in proliferative responses of spleen cells. This occurred at days 2-6 PI even when concanavalin A (con A) was added and when stimulated with KI-1 antigen, suggesting suppression of the immunity. CD4(+) T-cells decreased markedly at day 2 PI (P < 0.05), whereas CD8(+) T-cells, NK cells, and macrophages did not show significant changes, except a slight, but significant, increase of CD8(+) T-cells at day 6 PI. The capacity of splenocytes to produce IFN-γ by con A stimulation dropped significantly at days 2-6 PI. These results demonstrate that intraperitoneal injection of KI-1 tachyzoites can induce immunosuppression during the early stage of infection, as revealed by the decrease of CD4(+) T-cells and IFN-γ.  相似文献   

10.
Matrix metalloproteinases (MMPs) are family of zinc dependent endopeptidases, which cleave extracellular matrix proteins, and play an important role in tissue remodelling in physiological and pathological processes. There is enhanced expression of MMPs, in particular MMP-9, during numerous pathological conditions, including epilepsy and ischemic stroke. Therefore, inhibition of MMP-9 is considered as a potential therapeutic target. Tissue Inhibitor of Matrix Metalloproteinase-1 (TIMP-1) is a 28 kDa endogenous inhibitor of MMP-9. In this study we examined recombinant mouse TIMP-1 for its in-vitro neuroprotective effects, against Kainic Acid (KA) induced excitotoxicity in organotypic hippocampal slice culture (OHC) model. We also studied, sustained release effects of TIMP-1 in OHC by using poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs). TIMP-1 and TIMP-1 PLGA NPs were added to the slice cultures at different time points, i.e., 30 min before treatment with KA and 6 h after KA treatment. Propidium iodide staining was used to reveal cell toxicity in the cultures. In addition, neurotoxicity was assessed using standard lactate dehydrogenase (LDH) release assay. Gelatinolytic activity in conditioned cultured medium of OHC was accessed by a fluorescent substrate assay. Briefly, our result show that TIMP-1 provided significant level of neuroprotection, especially when given before 30 min of KA and released from the NPs. Since gelatinolytic activity assay showed a decrease in MMP-9 activity, it can be suggested that this neuroprotection might be mediated by the gelatinase inhibition.  相似文献   

11.
The aim of this study was to determine reference values of matrix metalloproteinases (MMPs) MMP-1, MMP-2, MMP-9 and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) in the amniotic fluid at the first stage of labor in physiological pregnancy. Eighty nine women at the first stage of term labor have been examined. Samples of amniotic fluid were taken at the first period of labor by vaginal amniotomy. Concentrations of MMP-1, MMP-2, MMP-9, and TIMP-1 have been investigated in amniotic fluid samples by ELISA kits. The following normal concentration ranges for MMP-1, MMP-2, MMP-9, TIMP-1, and ratios of concentrations of MMPs and TIMP-1 (MMP-1/TIMP-1, MMP-2/TIMP-1, MMP-9/TIMP-1) have been determined for amniotic fluid samples obtained during the first period of labor in physiological pregnancy. These included: MMP-1: 5.1–16.8 pg/mg of protein; MMP-2: 238.3–374.1 pg/mg of protein; MMP-9: 66.1–113.3 pg/mg of protein, TIMP-1: 4.7–13.6 pg/mg of protein, MMP-1/TIMP-1 ratio: 0.1–2.2, MMP-2/TIMP-1 ratio: 19.9–55.7; MMP-9/TIMP-1 ratio: 4.2–17.2.  相似文献   

12.
Remodelling of the extracellular matrix (ECM) and cell surface by matrix metalloproteinases (MMPs) is an important function of monocytes and macrophages. Recent work has emphasised the diverse roles of classically and alternatively activated macrophages but the consequent regulation of MMPs and their inhibitors has not been studied comprehensively. Classical activation of macrophages derived in vitro from un-fractionated CD16(+/-) or negatively-selected CD16(-) macrophages up-regulated MMP-1, -3, -7, -10, -12, -14 and -25 and decreased TIMP-3 steady-state mRNA levels. Bacterial lipopolysaccharide, IL-1 and TNFα were more effective than interferonγ except for the effects on MMP-25, and TIMP-3. By contrast, alternative activation decreased MMP-2, -8 and -19 but increased MMP -11, -12, -25 and TIMP-3 steady-state mRNA levels. Up-regulation of MMPs during classical activation depended on mitogen activated protein kinases, phosphoinositide-3-kinase and inhibitor of κB kinase-2. Effects of interferonγ depended on janus kinase-2. Where investigated, similar effects were seen on protein concentrations and collagenase activity. Moreover, activity of MMP-1 and -10 co-localised with markers of classical activation in human atherosclerotic plaques in vivo. In conclusion, classical macrophage activation selectively up-regulates several MMPs in vitro and in vivo and down-regulates TIMP-3, whereas alternative activation up-regulates a distinct group of MMPs and TIMP-3. The signalling pathways defined here suggest targets for selective modulation of MMP activity.  相似文献   

13.
Matrix metalloproteinase-1 (MMP-1) plays an important role in the degradation of collagen in inflammatory diseases. The aim of this study was to investigate the cellular expression of MMP-1 and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), in gingival fibroblasts co-cultured with monocytes and the possible mediating role of intercellular adhesion molecule-1 (ICAM-1). In co-cultures, the expression of MMP-1 and TIMP-1 increased in fibroblasts, but not in monocytes, although the number of MMP-1+ and TIMP-1+ adhered monocytes increased. Moreover, ICAM-1 expression in both fibroblasts and adhered monocytes increased. In the presence of an anti-ICAM-1 antibody, the expression of MMP-1 in fibroblasts decreased whereas the number of TIMP-1+ adhered monocytes increased. The p38 MAPK inhibitor SB203580 reduced MMP-1 expression in fibroblasts, as well as ICAM-1 expression in both fibroblasts and adhered monocytes. The results suggest that co-culture with monocytes enhances cellular expression of MMP-1 and TIMP-1 in gingival fibroblasts, and that the increased MMP-1 expression, in contrast to TIMP-1, is partly mediated by the adhesion molecule ICAM-1 and the p38 MAPK signal pathway.  相似文献   

14.
In order to investigate the relationship between the endometrial receptivity and matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 ,-3 (TIMP-1,-3) in the en-dometrium, we used early pregnant mice as the animal model and studied the expression of MMP-2, TIMP-1 ,-3 in the endometrium in relation to the number of implantation sites after RU486 treatment. The results indicated that RU486 could significantly inhibit embryo implantation and change the expression of MMP-2 and TIMP-1,-3 in a dose-dependent pattern. When the mice were treated with 12 mg/kg RU486, there were a few embryos implanted as compared with the control. The expression of matrix metalloproteinase MMP-2 was low during the period of "implantation window", while the tissue inhibitor of metalloproteinase in the endometrial cells was high, suggesting that the activity of the proteolytic enzyme was strictly controlled by its inhibitors. After RU486 treatment, the generation of TIMP-1,3 was decreased while the MMP-2 wa  相似文献   

15.
In order to investigate the relationship between the endometrial receptivity and matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1,-3 (TIMP-1,-3) in the endometrium, we used early pregnant mice as the animal model and studied the expression of MMP-2, TIMP-1,-3 in the endometrium in relation to the number of implantation sites after RU486 treatment. The results indicated that RU486 could significantly inhibit embryo implantation and change the expression of MMP-2 and TIMP-1,-3 in a dose-dependent pattern. When the mice were treated with 12 mg/kg RU486, there were a few embryos implanted as compared with the control. The expression of matrix metalloproteinase MMP-2 was low during the period of "implantation window", while the tissue inhibitor of metalloproteinase in the endometrial cells was high, suggesting that the activity of the proteolytic enzyme was strictly controlled by its inhibitors. After RU486 treatment, the generation of TIMP-1,3 was decreased while the MMP-2 was significantly increased, indicating that the normal balance between the activators and their inhibitors in the tissue was broken and the extracellular matrix was excessively degraded, subsequently the embryo implantation was inhibited. Therefore, it is suggested that the anti-implantation effect of RU486 may be mediated by MMPs and their inhibitors TIMPs.  相似文献   

16.
Activation of T lymphocytes by human pathogens is a key step in the development of immune-mediated neurologic diseases. Because of their ability to invade the CNS and their increased secretion of proinflammatory cytokines, activated CD4+ T cells are thought to play a crucial role in pathogenesis. In the present study, we examined the expression of inflammatory mediators the cytokine-induced metalloproteinases (MMP-2, -3, and -9) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMP-1, -2, and -3), in human astrocytes in response to activated T cells. We used a model system of CD4+ T lymphocytes activated by persistent viral infection (human T lymphotropic virus, HTLV-I) in transient contact with human astrocytes. Interaction with T cells resulted in increased production of MMP-3 and active MMP-9 in astrocytes despite increased expression of endogenous inhibitors, TIMP-1 and TIMP-3. These data suggest perturbation of the MMP/TIMP balance. These changes in MMP and TIMP expression were mediated, in part, by soluble factors (presumably cytokines) secreted by activated T cells. Integrin-mediated cell adhesion is also involved in the change in MMP level, since blockade of integrin subunits (alpha1, alpha3, alpha5, and beta1) on T cells resulted in less astrocytic MMP-9-induced expression. Interestingly, in CNS tissues from neurological HTLV-I-infected patients, MMP-9 was detected in neural cells within the perivascular space, which is infiltrated by mononuclear cells. Altogether, these data emphasize the importance of the MMP-TIMP axis in the complex interaction between the CNS and invading immune cells in the context of virally mediated T cell activation.  相似文献   

17.
CNS tuberculosis (CNS-TB) is the most deadly form of tuberculous disease accounting for 10% of clinical cases. CNS-TB is characterized by extensive tissue destruction, in which matrix metalloproteinases (MMPs) may play a critical role. We investigated the hypothesis that Mycobacterium tuberculosis activates monocyte-astrocyte networks increasing the activity of key MMPs. We examined the expression of all human MMPs and the tissue inhibitors of metalloproteinases (TIMPs) in human astrocytes stimulated by conditioned medium from M. tuberculosis-infected monocytes (CoMTB). Real-time RT-PCR showed that gene expression of MMP-1, -2, -3, -7, and -9 was increased (p < 0.05). MMP-9 secretion was significantly up-regulated at 24 h and increased over 120 h (p < 0.01). MMP-1, -3, and -7 secretion was not detected. Secretion of MMP-2 was constitutive and unaffected by CoMTB. Astrocyte gene expression and secretion of TIMP-1 was not affected by CoMTB although TIMP-2 secretion increased 3-fold at 120 h. Immunohistochemical analysis of human brain biopsies confirmed that astrocyte MMP-9 secretion is a predominant feature in CNS-TB in vivo. Dexamethasone inhibited astrocyte MMP-9, but not TIMP-1/2 secretion in response to CoMTB. CoMTB stimulated the nuclear translocation of NF-kappaB, inducing a 6-fold increase in nuclear p65 and a 2-fold increase in nuclear p50. This was associated with degradation of IkappaBalpha and beta within 30 min, persisting for 24 h. In summary, networks active between monocytes and astrocytes regulate MMP-9 activity in tuberculosis and astrocytes are a major source of MMP-9 in CNS-TB. Astrocytes may contribute to a matrix degrading environment within the CNS and subsequent morbidity and mortality.  相似文献   

18.
Although viruses have been implicated in central nervous system (CNS) diseases of unknown etiology, including multiple sclerosis and amyotrophic lateral sclerosis, the reproducible identification of viral triggers in such diseases has been largely unsuccessful. Here, we explore the hypothesis that viruses need not replicate in the tissue in which they cause disease; specifically, that a peripheral infection might trigger CNS pathology. To test this idea, we utilized a transgenic mouse model in which we found that immune cells responding to a peripheral infection are recruited to the CNS, where they trigger neurological damage. In this model, mice are infected with both CNS-restricted measles virus (MV) and peripherally restricted lymphocytic choriomeningitis virus (LCMV). While infection with either virus alone resulted in no illness, infection with both viruses caused disease in all mice, with ~50% dying following seizures. Co-infection resulted in a 12-fold increase in the number of CD8+ T cells in the brain as compared to MV infection alone. Tetramer analysis revealed that a substantial proportion (>35%) of these infiltrating CD8+ lymphocytes were LCMV-specific, despite no detectable LCMV in CNS tissues. Mechanistically, CNS disease was due to edema, induced in a CD8-dependent but perforin-independent manner, and brain herniation, similar to that observed in mice challenged intracerebrally with LCMV. These results indicate that T cell trafficking can be influenced by other ongoing immune challenges, and that CD8+ T cell recruitment to the brain can trigger CNS disease in the apparent absence of cognate antigen. By extrapolation, human CNS diseases of unknown etiology need not be associated with infection with any particular agent; rather, a condition that compromises and activates the blood-brain barrier and adjacent brain parenchyma can render the CNS susceptible to pathogen-independent immune attack.  相似文献   

19.
Besides their natural bird hosts, Trichobilharzia regenti cercariae are able to penetrate skin of mammals, including humans. Experimental infections of mice showed that schistosomula of this species are able to avoid the immune response in skin of their non-specific mammalian host and escape the skin to migrate to the CNS. Schistosomula do not mature in mammals, but can survive in nervous tissue for several days post infection. Neuroinfections of specific bird hosts as well as accidental mammalian hosts can lead to neuromotor effects, for example, leg paralysis and thus this parasite serves as a model of parasite invasion of the CNS.Here, we show by histological and immunohistochemical investigation of CNS invasion of immunocompetent (BALB/c) and immunodeficient (SCID) mice by T. regenti schistosomula that the presence of parasites in the nervous tissue initiated an influx of immune cells, activation of microglia, astrocytes and development of inflammatory lesions. Schistosomula elimination in the tissue depended on the host immune status. In the absence of CD3+ T-cells in immunodeficient SCID mice, parasite destruction was slower than that in immunocompetent BALB/c mice. Axon injury and subsequent secondary demyelination in the CNS were associated with mechanical damage due to migration of schistosomula through the nervous tissue, and not by host immune processes. Immunoreactivity of the parasite intestinal content for specific antigens of oligodendrocytes/myelin and neurofilaments showed for the first time that schistosomula ingest the nervous tissue components during their migration.  相似文献   

20.
Degradation and resynthesis of the extracellular matrix (ECM) are essential during tissue remodeling. Expansion of the vascular intima in atherosclerosis and restenosis following injury is dependent upon smooth muscle cell (SMC) proliferation and migration. The migration of SMC from media to intima critically depends on degradation of ECM protein by matrix metalloproteinases (MMPs). MMP inhibitors and eNOS gene transfer have been shown to inhibit SMC migration in vitro and neointima formation in vivo. Nitric oxide (NO) and cyclic-GMP have been implicated in the inhibition of VSMC migration. But, there are few studies addressing the role of NO signaling pathways on the expression of MMPs. Here we reported the involvement of cyclic-GMP-dependent protein kinase (PKG) (an important mediator of NO and cGMP signaling pathway in VSMC) on MMP-2 expression in rat aortic SMC. The goal of the present study was to gain insight into the possible involvement of PKG on MMP-2 in rat aortic SMC. MMP-2 protein and mRNA level and activity were downregulated in PKG-expressing cells as compared to PKG-deficient cells. In addition, the secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased in PKG-expressing cells as compared to PKG-deficient cells. PKG-specific membrane permeable peptide inhibitor (DT-2) reverses the process. Interestingly, little or no changes of MMP-9 were observed throughout the study. Taken together our data suggest the possible role of PKG in the suppression of MMP-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号