首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.  相似文献   

2.
Non-small-cell lung cancer (NSCLC) frequently metasta- sizes to bone. It is known that zoledronic acid is cytostatic to tumors, and everolimus, the inhibitor for mammalian target of the rapamycin, could inhibit many types of cancer. Herein, we evaluated the effect of zoledronic acid alone and in combination with everolimus on treating lung adenocarcinoma bone metastasis in vitro and in vivo. Mice treated with zoledronic acid in combination with everoli- mus had more apoptotic lung cancer cells and more cells were arrested in the G1/G0 phase. The phosphorylation of p70S6K was inhibited in the combination treatment group. Lung cancer cell invasion was also significantly inhibited in the group with combination treatment in vitro. Bone nuclear scans revealed more metastatic lesions in controls compared with those in the combination treatment group. Bone scans and radiographic images indicated that com- bination therapy significantly reduced bone metastasis. The moderate survival rate suggested that the drug com- bination was synergistic, which can delay NSCLC bone metastasis and prolong survival in vivo.  相似文献   

3.
Gastric cancer(GC)is a primary cause of cancer-related mortality worldwide,and even after therapeutic gastrectomy,survival rates remain poor.The presence of gastric cancer stem cells(GCSCs)is thought to be the major reason for resistance to anticancer treatment(chemotherapy or radiotherapy),and for the development of tumor recurrence,epithelial–mesenchymal transition,and metastases.Additionally,GCSCs have the capacity for self-renewal,differentiation,and tumor initiation.They also synthesize antiapoptotic factors,demonstrate higher performance of drug efflux pumps,and display cell plasticity abilities.Moreover,the tumor microenvironment(TME;tumor niche)that surrounds GCSCs contains secreted growth factors and supports angiogenesis and is thus responsible for the maintenance of the growing tumor.However,the genesis of GCSCs is unclear and exploration of the source of GCSCs is essential.In this review,we provide up-todate information about GCSC-surface/intracellular markers and GCSC-mediated pathways and their role in tumor development.This information will support improved diagnosis,novel therapeutic approaches,and better prognosis using GCSC-targeting agents as a potentially effective treatment choice following surgical resection or in combination with chemotherapy and radiotherapy.To date,most anti-GCSC blockers when used alone have been reported as unsatisfactory anticancer agents.However,when used in combination with adjuvant therapy,treatment can improve.By providing insights into the molecular mechanisms of GCSCs associated with tumors in GC,the aim is to optimize anti-GCSCs molecular approaches for GC therapy in combination with chemotherapy,radiotherapy,or other adjuvant treatment.  相似文献   

4.
Cao Q  Lu X  Feng YJ 《Cell research》2006,16(7):671-677
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.  相似文献   

5.
6.
Dear Editor,Globally,gastric cancer is the most common malignant tumor and the second highest contributor to cancer deaths after lung cancer(Murray et al.,2012).Despite improved success with treatment of early stage gastric cancer(Fuse et al.,2016),the five-year survival rate of advanced staged gastric cancer patients is still low.The aggressive growth characteristics of the tumor and metastasis are key factors responsible for poor overall survival in these patients(Ozkan et al.,2005).Therefore,investigation of the molecular mechanisms that underlie the aggressive behavior of gastric cancers,and identification of potential target genes for therapeutic interventions,is a key imperative.  相似文献   

7.
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) shows increased expression in a wide variety of human cancers, and its over-expression is associated with enhanced migration, invasion, and in vivo metastasis. Here, we reported that CEACAM6 was up-regulated in gastric cancer (GC) cell lines and tumor tissues. Overexpression of CEACAM6 in MKN-45 and SGC-7901 GC cells promoted migration and invasion in vitro and metastasis in athymic mice, whereas migration and invasion of MKN-28 and SNU-16 GC cells were suppressed by knockdown of CEACAM6. We also observed that steroid receptor coactivator (C-SRC) phosphorylation was increased when CEACAM6 was over-expressed in SGC-7901 cells. Taken together, these results suggested that CEACAM6 functions as an oncoprotein in GC and may be an important metastatic biomarker and therapeutic target.  相似文献   

8.
9.
DNA repair capacity (DRC) is correlated with sensitivity of cancer cells toward platinum-based chemotherapy. We hypothesize that genetic polymorphisms in DNA repair gene XPA (xeroderma pigmentosum group A) and XPG (xeroderma pigmentosum group G) (ERCC5, excision repair cross-complementation group 5), which result in inter-individual differences in DNA repair efficiency, may predict clinical response to platinum agents in advanced non-small cell lung cancer (NSCLC) patients. In this study, we find that the A → G change of XPA A23G polymorphism significantly increased response to platinum-based chemotherapy. Polymorphism in XPG His46His was associated with a decreased treatment response, but was not statistically significant.  相似文献   

10.
There are two possible outcomes when DNA damage occurs in normal mammalian cells: either induction of cell-cycle checkpoint which inhibits the progress of the cell cycles as well as activates DNA repair pathways, or activation of apoptosis to eliminate damaged cells. The p53 tumour-suppressor gene plays a key role in selecting these pathways. In our present works, the human gastric cancer cell line AGS was treated with tripchlorolide, a potent antitumor compound purified from a Chinese herb Tripterygium Wilfordii Hook. Single cell gel electrophoresis (Comet assay) showed that the treatment of tripchlorolide resulted in DNA damage in AGS cells. The damaged AGS cells went through apoptosis, which was time- and dose- dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号