首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Intronerator (http://www.cse.ucsc.edu/ approximately kent/intronerator/ ) is a set of web-based tools for exploring RNA splicing and gene structure in Caenorhabditis elegans. It includes a display of cDNA alignments with the genomic sequence, a catalog of alternatively spliced genes and a database of introns. The cDNA alignments include >100 000 ESTs and almost 1000 full-length cDNAs. ESTs from embryos and mixed stage animals as well as full-length cDNAs can be compared in the alignment display with each other and with predicted genes. The alt-splicing catalog includes 844 open reading frames for which there is evidence of alternative splicing of pre-mRNA. The intron database includes 28 478 introns, and can be searched for patterns near the splice junctions.  相似文献   

3.
4.
5.
We have previously isolated a cDNA clone from Caenorhabditis elegans that encodes a novel form of G-protein-linked acetylcholine receptor, termed GAR-2. GAR-2 is similar to but pharmacologically distinct from muscarinic acetylcholine receptors. Here we report the identification of two gar-2 cDNA clones that are different from the previous one. These newly identified cDNAs encode polypeptides of 664 and 627 amino acids, whereas the previous one encodes a polypeptide of 614 amino acids. The three GAR-2 isoforms, which differ only in the third intracellular loop, arise from alternative splicing. Electrophysiological analyses using the Xenopus oocyte system showed that all three GAR-2 isoforms couple to the activation of G-protein-gated inwardly rectifying K+ (GIRK1) channel with similar drug specificity. Our results indicate that alternative splicing plays an important role in promoting molecular diversity of G-protein-linked acetylcholine receptors in C. elegans.  相似文献   

6.
The unc-52 gene encodes the nematode homologue of mammalian perlecan, the major heparan sulfate proteoglycan of the extracellular matrix. This is a large complex protein with regions similar to low-density lipoprotein receptors, laminin, and neural cell adhesion molecules (NCAMs). In this study, we extend our earlier work and demonstrate that a number of complex isoforms of this protein are expressed through alternative splicing. We identified three major classes of perlecan isoforms: a short form lacking the NCAM region and the C-terminal agrin-like region; a medium form containing the NCAM region, but still lacking the agrin-like region; and a newly identified long form that contains all five domains present in mammalian perlecan. Using region-specific antibodies and unc-52 mutants, we reveal a complex spatial and temporal expression pattern for these UNC-52 isoforms. As well, using a series of mutations affecting different regions and thus different isoforms of UNC-52, we demonstrate that the medium NCAM-containing isoforms are sufficient for myofilament lattice assembly in developing nematode body-wall muscle. Neither short isoforms nor isoforms containing the C-terminal agrin-like region are essential for sarcomere assembly or muscle cell attachment, and their role in development remains unclear.  相似文献   

7.
GC-AG introns represent 0.7% of total human pre-mRNA introns. To study the function of GC-AG introns in splicing regulation, 196 cDNA-confirmed GC-AG introns were identified in Caenorhabditis elegans. These represent 0.6% of the cDNA- confirmed intron data set for this organism. Eleven of these GC-AG introns are involved in alternative splicing. In a comparison of the genomic sequences of homologous genes between C.elegans and Caenorhabditis briggsae for 26 GC-AG introns, the C at the +2 position is conserved in only five of these introns. A system to experimentally test the function of GC-AG introns in alternative splicing was developed. Results from these experiments indicate that the conserved C at the +2 position of the tenth intron of the let-2 gene is essential for developmentally regulated alternative splicing. This C allows the splice donor to function as a very weak splice site that works in balance with an alternative GT splice donor. A weak GT splice donor can functionally replace the GC splice donor and allow for splicing regulation. These results indicate that while the majority of GC-AG introns appear to be constitutively spliced and have no evolutionary constraints to prevent them from being GT-AG introns, a subset of GC-AG introns is involved in alternative splicing and the C at the +2 position of these introns can have an important role in splicing regulation.  相似文献   

8.
9.
10.
Serine/arginine-rich proteins (SR proteins) constitute a family of RNA-binding proteins conserved throughout metazoans. The SR proteins are essential for constitutive pre-mRNA splicing and also affect regulated pre-mRNA splicing. We identified five putative genes encoding SR proteins (referred to as srp genes) in Caenorhabditis elegans, examined their expression using the gfp gene as a reporter, and suppressed their functions by double-stranded RNA-mediated interference (RNAi). The srp::gfp fusion genes were expressed in the nuclei of most somatic cells and showed no obvious tissue- or stage-specific expression. Simultaneous RNAi of the five srp genes resulted in embryonic lethality, whereas RNAi of individual srp genes caused no obvious morphological abnormality in the F1 progeny, indicating functional redundancy of the SR proteins. However, RNAi of several combinations of srp genes caused various developmental abnormalities, such as abnormal somatic gonad structures, delayed shift of the germ cell sexual differentiation, and abnormal spermatogenesis. Our results suggest that individual SR proteins have unique but somewhat redundant functions in C. elegans development.  相似文献   

11.
12.
13.
14.
Brenner JL  Kemp BJ  Abbott AL 《PloS one》2012,7(5):e37185
The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans.  相似文献   

15.
16.
Processing bodies (P bodies) are conserved mRNA-protein (mRNP) granules that are thought to be cytoplasmic centers for mRNA repression and degradation. However, their specific functions in vivo remain poorly understood. We find that repressed maternal mRNAs and their regulators localize to P body-like mRNP granules in the Caenorhabditis elegans germ line. Surprisingly, several distinct types of regulated granules form during oocyte and embryo development. 3' untranslated region elements direct mRNA targeting to one of these granule classes. The P body factor CAR-1/Rap55 promotes association of repressed mRNA with granules and contributes to repression of Notch/glp-1 mRNA. However, CAR-1 controls Notch/glp-1 only during late oogenesis, where it functions with the RNA-binding regulators PUF-5, PUF-6, and PUF-7. The P body protein CGH-1/Rck/Dhh1 differs from CAR-1 in control of granule morphology and promotes mRNP stability in arrested oocytes. Therefore, a system of diverse and regulated RNP granules elicits stage-specific functions that ensure proper mRNA control during early development.  相似文献   

17.
18.
19.
20.
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号