首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Unfolded protein response(UPR) is an adaptive reaction for cells to reduce endoplasmic reticulum(ER) stress. In many types of cancers, such as lung cancer and pancreatic cancer, cancer cells may harness ER stress to facilitate their survival and growth. Prion protein(PrP) is a glycosylated cell surface protein that has been shown to be up-regulated in many cancer cells. Since PrP is a protein prone to misfolding, ER stress can result in under-glycosylated PrP, which in turn may activate ER stress. To assess whether ER stress leads to the production of under-glycosylated PrP and whether underglycosylated PrP may contribute to ER stress thus leading to cancer cell apoptosis, we treated different cancer cells with brefeldin A(BFA), thapsigargin(Thps), and tunicamycin(TM). We found that although BFA, Thps, and TM treatment activated UPR, only ATF4 was consistently activated by these reagents, but not other branches of ER stress. However, the canonical PERK-eIF2α-ATF4 did not account for the observed activation of ATF4 in lung cancer cells. In addition, BFA,but neither Thps nor TM, significantly stimulated the expression of cytosolic PrP. Finally, we found that the levels of PrP contributed to anti-apoptosis activity of BFA-induced cancer cell death. Thus, the pathway of BFA-induced persistent ER stress may be targeted for lung and pancreatic cancer treatment.  相似文献   

3.
4.
5.
Fang H  Huang W  Xu YY  Shen ZH  Wu CQ  Qiao SY  Xu Y  Yu L  Chen HL 《Cell research》2006,16(1):82-92
N-acetylglucosaminyltransferase V (GnT-V) is an important tumorigenesis and metastasis-associated enzyme. To study its biofunction, the GnT-V stably suppressed cell line (GnT-V-AS/7721) was constructed from 7721 hepatocarcinoma cells in previous study. In this study, cDNA array gene expression profiles were compared between GnT-V-AS/7721 and parental 7721 cells. The data indicated that GnT-V-AS/7721 showed a characteristic expression pattern consistent with the ER stress. The molecular mechanism of the ER stress was explored in GnT-V-AS/7721 by the analysis on key molecules in both two unfolded protein response (UPR) pathways. For ATF6 and Irel/XBP-1 pathway, it was evidenced by the up-regulation of BIP at mRNA and protein level, and the appearance of the spliced form ofXBP-1. As for PERK/eIF2α pathway, the activation of ER eIF2α kinase PERK was observed. To confirm the results from GriT-V-AS/7721 cells, the key molecules in the UPR were examined again in 7721 cells interfered with the GnT-V by the specific RNAi treatment. The results were similar with those from GnT-V-AS/7721, indicating that blocking of GnT-V can specifically activate ER stress in 7721 cells. Rate of 3H-Man incorporation corrected with rate of 3H-Leu incorporation in GnT-V-AS/7721 was down-regulated greatly compared with the control, which demonstrated the deficient function of the enzyme synthesizing N-glycans after GnT-V blocking. Moreover, the faster migrating form of chaperone GRP94 associated with the underglycosylation, and the extensively changed N-glycans structures of intracellular glycoproteins were also detected in GnT-V-AS/7721. These results supported the mechanism that blocking of GnT-V expression impaired functions of chaperones and N-glycan-synthesizing enzymes, which caused UPR in vivo.  相似文献   

6.
Clostridium difficile is the main cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans and animals. Its pathogenicity is primarily linked to the secretion of two exotoxins (TcdA and TcdB). Although great progress in the toxic mechanism of TcdA and TcdB has been achieved, there are many conflicting reports about the apop- totic mechanism. More importantly, apoptotic endoplasmic reticulum (ER) stress has been reported in cells treated with Shiga toxins---another kind of cytotoxins that can cause diar- rhea and colitis. Herein we checked whether TcdB can induce ER stress. The results showed that recombinant TcdB (rTcdB) activated molecular markers of unfolded protein re- sponse, suggesting that rTcdB induced ER stress in CT26 cells. However, rTcdB did not induce the up-regulation of C/EBP homologous protein (CHOP), a classic mediator of apoptotic ER stress, but it activated the precursor of cysteine aspartic acid-specific protease 12 (caspase-12), a controver- sial mediator of apoptotic ER stress. Besides, glucosyltrans- ferase activity-deficient mutant recombinant TcdB induced ER stress, though it has no cytotoxic or cytopathic effect on CT26 cells. Altogether, these data demonstrated that ER stress induced by rTcdB is glucosyltransferase-independent, indicating that ER stress induced by rTcdB is non-apoptotic. This work also offers us a new insight into the molecular mechanism of CHOP protein expression regulation and the role of CHOP expression in ER stress.  相似文献   

7.
Yao H  Tang X  Shao X  Feng L  Wu N  Yao K 《Cell research》2007,17(6):565-571
The apoptosis of lens epithehal cells has been proposed as the common basis of cataract formation, with oxidative stress as the major cause. This study was performed to investigate the protective effect of the herbal constituent parthenolide against oxidative stress-induced apoptosis of human lens epithelial (HLE) cells and the possible molecular mechanisms involved. HLE cells (SRA01-04) were incubated with 50 μM H2O2 in the absence or presence of different doses of parthenolide (10, 20 and 50 μM). To study apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining flow cytometry; to investigate the underlying molecular mechanisms, the expression of caspase-3 and caspase-9 were assayed by Western blot and quantitative RT-PCR, and the activities of caspase-3 and caspase-9 were measured by a Chemicon caspase colorimetric activity assay kit. Stimulated with H202 for 18 h, a high fraction of riLE cells underwent apoptosis, while in the presence ofparthenolide of different concentrations, dose-dependent blocking of HLE cell apoptosis was observed. The expression of caspase-3 and caspase-9 induced by H202 in HLE cells was significantly reduced by parthenolide both at the protein and mRNA levels, and the activation ofcaspase-3 and caspase-9 was also suppressed by parthenolide in a dose-dependent manner. In conclusion, parthenolide prevents HLE cells from oxidative stress-induced apoptosis through inhibition of the activation ofcaspase-3 and caspase-9, suggesting a potential protective effect against cataract formation.  相似文献   

8.
The morphology characteristics of cell apoptosis of the malignant tumour cells in magnetic field-treated mouse was observed for the first time. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums (ER) expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. Apoptosis of cancer cells was detected by terminal deoxynucleotidyl transferase mediated in situ nick end labeling (TUNEL). It was found that the number of apoptosis cancer cells of the sample treated by the magnetic field is more than that of the control sample. The growth of malignant tumour in mice was inhibited and the ability of immune cell to dissolve cancer cells was improved by ultralow frequency (ULF) pulsed gradient magnetic field; the nuclei DNA contents decreased, indi  相似文献   

9.
Local anesthetics inhibit cell proliferation and induce apoptosis in various cell types. Ropivacaine, a unique, novel tertiary amine-type anesthetic, was shown to inhibit the proliferation of several cell types including keratinocytes. We found that Ropivacaine could inhibit the proliferation and induce apoptosis in an immortalized human keratinocyte line,HaCaT, in a dose- and time-dependent manner and with the deprivation of serum. The dose-dependent induction of apoptosis by ropivacaine was demonstrated by DNA fragmentation analysis and the proteolytic cleavage of a caspase-3 substrate—poly (ADP-ribose) polymerase (PARP). In addition, ropivacaine downregulated the expression of clusterin/ apoliporotein J, a protein with anti-apoptotic properties, in a dose-dependent manner, which well correlated with the induction of apoptosis of HaCaT cells. To investigate the role of clusterin/apoliporotein J in ropivacaine-induced apoptosis,HaCaT cells overexpressing clusterin/apoliporotein J were generated and compared to cells expressing the well established anti-apoptotic Bcl-2 protein. Ectopic overexpression of the secreted form of clusterin/apoliporotein J or Bcl-2decreased the sensitivity of HaCaT cells to toxic effects of ropivacaine as demonstrated by DNA fragmentation, the proteolytic cleavage of PARP and by a reduction in procaspase-3 expression. Furthermore, the downregulation of endogenous clusterin/apolipoprotein J levels by ropivacaine suggested that this might be one mechanism by which ropivacaine induced cell death in HaCaT cells. In conclusion, the ability of ropivacaine to induce antiproliferative responses and to suppress the expression of the anti-apoptotic protein clusterin/apolipoprotein J, combined with previously reported anti-inflammatory activity and analgesic property of the drug, suggests that ropivacaine may have potential utility in the local treatment of tumors.  相似文献   

10.
Cortactin is an F-actin binding protein, regulating cell movement and adhesive junction assembly. However, the function of cortactin in epithelial-mesenchymal transition (EMT) remains elusive. Here we found that during transforming growth factor-β1 (TGF-β1)- induced EMT in AML-12 murine hepatocytes, cortactin underwent tyrosine dephosphorylation. Inhibition of the dephosphorylation of eortactin by sodium vanadate blocked TGF-β1-induced EMT. Knockdown of cortactin by RNAi led to decrease of intercellular junction proteins E-cadherin and Zonula occludens-1 and induced expression of mesenchymal protein fibronectin. Additionally, knockdown of cortactin further promoted TGF-β1-induced EMT in AML-12 cells, as determined by EMT markers and cell morphological changes. Moreover, migration assay showed that cortactin knockdown promoted the migration of AML-12 cells, and also enhanced TGF-β1-induced migration. Our study showed the involvement of cortactin in the TGF- β1-induced EMT.  相似文献   

11.
Expression and function of leptin and its receptor in mouse mammary gland   总被引:4,自引:0,他引:4  
Leptin is an autocrine and paracrine factor which affects the development of duct, formation of gland alveolus, expression of milk protein gene and onset involution of mammary gland. In order to know the function and mechanism of leptin in mammary gland, the protein expression and localization of leptin and its long form receptor (OB-Rb) were detected by a confocal laser scanning microscope. To study the impacts of leptin on mammary gland and leptin signal transduction pathway in pregnancy-, lacta-tion-and involution-stage mammary gland, explants were cultured and Western blotting was used. The results showed that in the whole development cycle of mammary gland, the expression of leptin and OB-Rb was in positive correlation. In virgin the leptin expression was the highest and then decreased in pregnancy. In lactation the expression of leptin was low and upgraded in involution, and recovered to the original level about virgin on involution 13 d. The localization of leptin and OB-Rb revealed that leptin induced the expression of OB-Rb specifically and controlled the development and physiological function of the mammary gland by binding to OB-Rb. In pregnancy stage, leptin stimulated proliferation and differentiation of ductal epithelial cells by JAK-MAPK signal pathway. In lactation, leptin induced gene expression of β-casein by JAK-STAT5 signal pathway, and in involution leptin induced mammary epithelial cell apoptosis and mammary gland restitution by JAK-STAT3 signal pathway.  相似文献   

12.
Effects of thapsigargin,an inhibitor of Ca^2 -ATPase in surface of endoplasmic reticulum,on apoptotic cell death were studied in human hepatoma cells of BEL-7404 cell line by using both flow cytometry and electron microscopy.Propidium iodide staining and flow cytometry revealed that in the serum-free condition,thapsigargin increased the rate of apoptosis of BEL-7404 cells in a dose-dependent manner.Prolongation of the period of serum-free condition enhanced the apoptosis induced by thapsigargin treatment.Morphological observation with electron microscope further demonstrated that chromatin condensation and fragmentation,apoptotic bodies existed in TG-treated cells,supporting that thapsigargin is a potent activator of apoptosis in the cells.  相似文献   

13.
Chang YC  Xu YH 《Cell research》2000,10(3):233-242
Apoptosis plays an important role in embryonic development,tissue remodeling,immune regulation and tumor regression.Two groups of molecules(Bcl-2 family and “Death factor” family) are involved in regulating apoptosis.In order to know about the effect of Bcl-2 on apoptosis induced by Fas,a typical member of “Death factor” family,the transfection experiments with expression vectors pcDNA3-fl and pcDNA3-bcl-2 were performed in BEL-7404 cells,a human hepatocellular carcinoma cell line which expresses endogenous Fas,but not FasL and Bcl-2.The data showed that the expression of FasL in pcDNA3-fl transfected hepatoma cells obviously induced the apoptosis of the cells.However,the overexpression of Bcl-2 in pcDNA3-bcl-2 transfected 7404/b-16 cells counteracted pcDNA3-fl transient transfection mediated apoptosis.Further study by cotransfection experiments indicated that Bid but not Bax (both were pro-apoptotic proteins of Bcl-2 family) blocked the inhibitory effect of Bcl-2 on Fas-mediated apoptosis.These results suggested that Fas-mediated apoptosis in human hepatoma cells is possibly regulated by Bcl-2 family proteins via mitochondria pathway.  相似文献   

14.
Summary The rates of spontaneous cell detachment, cell viability, and apoptosis in primary cultures of rat hepatocytes plated at high and low density were compared. Apoptosis was frequent in detached cells, and the rates of cell detachment and apoptosis were greater in high-density than in low-density cultures. Among attached cells, more cells had condensed or fragmented nuclei in high-density than in low-density cultures. Further, ladder-like DNA fragmentation was not seen in low-cell-density cultures but was clearly evident in high-density cultures. Bax was more highly expressed in cells cultured at high density, and on collagen vs. matrigel, whereas changes of Bcl-2 and Fas expression observed in culture appeared unrelated to the rate of apoptosis. The rate of hepatocyte apoptosis appeared to be identical in low-density cultures on collagen 1 and matrigel, but when cells were cultured at high density, matrigel suppressed apoptosis by more than 50% at 36 h. In hepatocytes cultured on collagen 1, dexamethasone (0.1 μM) suppressed apoptosis in both low- and high-density cultures; higher doses had no further effects. In high density cultures, aurintricarboxylic acid (10 μM) suppressed apoptosis and this improved cell attachment at 48 h. It is concluded that cell viability in primary cultures of rat hepatocytes grown on collagen I is dependent on optimal culture density and that the cell population is regulated, at least in part, by apoptosis. Corticosteroids suppress spontaneous apoptosis of cultured hepatocytes in a non-dose-dependent manner, whereas matrigel abolishes apoptosis induced by increasing cell density. Bax may be an important protein in the cell density and cell matrix-dependent regulation of apoptosis in cultured hepatocytes.  相似文献   

15.
Paeoniflorin (PF) is one of the main effective components extracted from the root of Paeonia lactiflora, which has been used clinically to treat hepatitis in traditional Chinese medicine, but the details of the underlying mechanism remain unknown. The present study was designed to investigate the mechanism of protective effect of PF on d-galactosamine (GalN) and tumor necrosis factor-α (TNF-α)-induced cell apoptosis using human L02 hepatocytes. Our results confirmed that PF could attenuate GalN/TNF-α-induced apoptotic cell death in a dose-dependent manner. The disruption of mitochondrial membrane potential and the disturbance of intracellular Ca2+ concentration were also recovered by PF. Western blot analysis revealed that GalN/TNF-α induced the activation of a number of signature endoplasmic reticulum (ER) stress and mitochondrial markers, while PF pre-treatment had a marked dose-dependent suppression on them. Additionally, the anti-apoptotic effect of PF was further evidenced by the inhibition of caspase-3/9 activities in L02 cells. These findings suggest that PF can effectively inhibit hepatocyte apoptosis and the underlying mechanism is related to the regulating mediators in ER stress and mitochondria-dependent pathways.  相似文献   

16.
To study the effect of Akt2 gene on the apoptosis of breast cancer cells induced by H2O2. The full length cDNA of Akt2 gene was amplified by RT-PCR, and then cloned into pcDNA3.1 /myc-His(-)A vector (Wild type, WT-Akt2). Dominant negative mutant of AKT2 (DN-Ak2) were made by QuikChange site-directed mutagenesis. The eukaryotic expression vector of WT-Akt2 and DN-Akt2 were constructed, and were then transfected into MCF-7 breast cancer cells, respectively. Clones stably expressing Akt2 or DN-Akt2 were obtained by neomycin screening; Two different siRNA fragments targeted Akt2 gene were designed and synthesized, and were then transfected into the same cells. Cell apoptosis pre or post-H2O2 treatment was determined by TUNEL 和DNA Laddering assays. The sequencing result confirmed WT-Akt2 and DN-Akt2 were successfully constructed, and the results of Western Blot show They had good expression in MCF-7 cells, and Akt2 siRNA could effectively silence Akt2 expression. The resistance for apoptosis-induced by H2O2 in MCF-7 cells with WT-Akt2 over-expression was significantly increased (DN-Akt2 showed opposite function). The apoptotic cell number induced by H2O2 was significantly lower in stable transfectants with the WT-Akt2 vector than in those with empty vector or in untransfected cells (P <0.05), whereas no significant difference was found between the latter two groups (P >0.05). The function of inhibition of apoptosis by Akt2 was blocked by Akt2 siRNA and PI3K/Akt inhibitor, wortmannin. Thus, Akt2’s effect was further confirmed by these endogenous results. Overall, our study suggests that Akt2 can increase the resistance of human breast cancer cells to the apoptosis induced by H2O2, and it may be used as a therapeutic target for breast cancer, providing a foundation for investigation the molecular mechanism of breast cancer cells resistant to the apoptosis induced by reactive oxygen.  相似文献   

17.
To investigate the inhibitory effect of the Bcl-XL small interfering RNA (siRNA) on Bcl-XL gene expression in the human gastric cancer cell line MGC-803, green fluorescent protein (GFP) siRNA was constructed and transfected into MGC-803 cells, together with GFP expression vector pTrace SV40.GFP expression levels were observed using fluorescence microscopy. Bcl-XL siRNA and negative siRNA were then constructed and stably transfected into MGC-803 cells. RT-PCR and immunofluorescence were used to detect the expression of Bcl-XL. Spontaneous apoptosis was detected by acridine orange (AO) and flow cytometry. Results were as follows: (1) 48 h after GFP expression vector and GFP siRNA co-transfection,the expression level of GFP in the GFP siRNA group was much lower than the negative siRNA group,according to fluorescence microscopy results. The mRNA and protein levels of Bcl-XL in Bcl-XL siRNA stable transfectants were reduced to almost background level compared with negative siRNA transfectants or untreated cells. (2) Changes in nucleus morphology was observed by AO staining nucleic and flow cytometry analysis, which showed that stable Bcl-XL siRNA transfectants have an increased spontaneous apoptosis (21.17%± 1.26% vs. 1.19%±0.18% and 1.56%±0.15% respectively, P〈0.05 vs. negative siRNA or untreated control), siRNA targeting GFP or Bcl-XL genes can specifically suppress GFP or Bcl-XL expression in MGC-803 cells, and Bcl-XL siRNA can increase spontaneous apoptosis. Bcl-XL siRNA may be a beneficial agent against human gastric adenocarcinoma.  相似文献   

18.
19.
20.
Enhanced endoplasmic reticulum (ER)-associated protein degradation (ERAD) activity by the unfolded protein response (UPR) represents one of the mechanisms for restoring ER homeostasis. In vitro evidence indicates that the mammalian gp78 protein is an E3 ubiquitin ligase that facilitates ERAD by polyubiquitinating and targeting proteins for proteasomal degradation under both physiologic and stress conditions. However, the in vivo function of gp78 in maintaining ER protein homeostasis remains untested. Here we show that like its mammalian counterpart, the zebrafish gp78 is also an E3 ubiquitin ligase as revealed by in vitro ubiquitination assays. Expression analysis uncovered that gp78 is highly expressed in several organs, including liver and brain, of both larval and adult fish. Treatment of larvae or adult fish with tunicamycin induces ER stress and upregulates the expression of several key components of the gp78 ERAD complex in the liver. Moreover, liver-specific overexpression of the dominant-negative form of gp78 (gp78-R2M) renders liver more sensitive to tunicamycin-induced ER stress and enhances the expression of sterol response element binding protein (Srebp)-target genes, which was largely suppressed in fish overexpressing wild-type gp78. Together, these data indicate that gp78 plays a critical role in protecting against ER stress in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号