首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
封传红  张梅  马利  白马吞珠  黄冲  沈丽  李庆  郭聪 《生态学报》2020,40(20):7534-7542
西藏飞蝗Locusta migratoria tibetnsis Chen暴发成灾的重要原因之一是蝗蝻具有群集迁移危害习性。为阐明西藏飞蝗灾变的行为机制,为西藏飞蝗的监测预警和防治提供科学依据,利用视频跟踪技术测定了自然环境中西藏飞蝗蝗蝻群集迁移的运动速度、方向,建立自推进粒子模型模拟蝗蝻群集迁移行为,分析群集迁移效应。结果表明,①不同自然环境中的西藏飞蝗蝗蝻在群集迁移过程中,群体内个体的运动表现出定向集体运动,群集迁移速度为0.1256 m/s,0.2 m以内的个体蝗蝻方向趋向一致。沙滩、翻耕农田和草地蝗蝻群运动一致性参数均较高,分别为0.8502、0.7870和0.6987。②西藏飞蝗蝗蝻群由分散运动转变为群集迁移存在临界密度,密度较低时群体内个体分散运动,当蝗蝻密度达到12-15头/m2时,蝗蝻群体由分散运动转变为高度一致的群集迁移运动。③蝗蝻群通过群集迁移可以显著增加迁移距离,随机运动蝗蝻1 d扩展只有70-80 m,而群集迁移1 d最大距离可达2.5 km。蝗蝻群集迁移可以提高发现特别是远距离食物等资源的概率,使群体中更多的个体受益。④尽管未发现室外蝗蝻群存在先验个体,但模拟发现在群集迁移群体中,只需要少数先验个体(3%-5%)即可引导整个蝗蝻群运动。  相似文献   

2.
A main question for the study of collective motion in living organisms is the origin of orientational polar order, i.e., how organisms align and what are the benefits of such collective behaviour. In the case of micro-organisms swimming at a low Reynolds number, steric repulsion and long-range hydrodynamic interactions are not sufficient to explain a homogeneous polar order state in which the direction of motion is aligned. An external symmetry-breaking guiding field such as a mechanism of taxis appears necessary to understand this phonemonon. We have investigated the onset of polar order in the velocity field induced by phototaxis in a suspension of a motile micro-organism, the algae Chlamydomonas reinhardtii, for density values above the limit provided by the hydrodynamic approximation of a force dipole model. We show that polar order originates from a combination of both the external guiding field intensity and the population density. In particular, we show evidence for a linear dependence of a phototactic guiding field on cell density to determine the polar order for dense suspensions and demonstrate the existence of a density threshold for the origin of polar order. This threshold represents the density value below which cells undergoing phototaxis are not able to maintain a homogeneous polar order state and marks the transition to ordered collective motion. Such a transition is driven by a noise dominated phototactic reorientation where the noise is modelled as a normal distribution with a variance that is inversely proportional to the guiding field strength. Finally, we discuss the role of density in dense suspensions of phototactic micro-swimmers.  相似文献   

3.
4.
Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.  相似文献   

5.
Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.  相似文献   

6.
Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein''s original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.  相似文献   

7.
Locusts are short horned grasshoppers that exhibit two behaviour types depending on their local population density. These are: solitarious, where they will actively avoid other locusts, and gregarious where they will seek them out. It is in this gregarious state that locusts can form massive and destructive flying swarms or plagues. However, these swarms are usually preceded by the aggregation of juvenile wingless locust nymphs. In this paper we attempt to understand how the distribution of food resources affect the group formation process. We do this by introducing a multi-population partial differential equation model that includes non-local locust interactions, local locust and food interactions, and gregarisation. Our results suggest that, food acts to increase the maximum density of locust groups, lowers the percentage of the population that needs to be gregarious for group formation, and decreases both the required density of locusts and time for group formation around an optimal food width. Finally, by looking at foraging efficiency within the numerical experiments we find that there exists a foraging advantage to being gregarious.  相似文献   

8.
An animal's movement is expected to be governed by an interplay between goals determined by its internal state and energetic costs associated with navigating through the external environment. Understanding this ecological process is challenging when an animal moves in two dimensions and even more difficult for birds that move in a third dimension. To understand the dynamic interaction between the internal state of an animal and the variable external environment, we evaluated hypotheses explaining association of different covariates of movement and the trade-offs birds face as they make behavioural decisions in a fluctuating landscape. We used ~870 000 GPS telemetry data points collected from 68 Golden Eagles Aquila chrysaetos to test demographic, diel, topographic and meteorological hypotheses to determine (1) the probability that these birds would be in motion and (2), once in motion, their flight speed. A complex and sometimes interacting set of potential internal and external factors determined movement behaviour. There was good evidence that reproductive state, manifested as age, sex and seasonal effects, had a significant influence on the probability of being in motion and, to a lesser extent, on speed of motion. Likewise, movement responses to the external environment were often unexpectedly strong. These responses, to northness of slope, strength of orographic updraft and intensity of solar radiation, were regionally and temporally variable. In contrast to previous work showing the role of a single environmental factor in determining movement decisions, our analyses support the hypothesis that multiple factors simultaneously interact to influence animal movement. In particular they highlighted how movement is influenced by the interaction between the individual's internal reproductive state and the external environment, and that, of the environmental factors, topographic influences are often more relevant than meteorological influences in determining patterns of flight behaviour. Further disentangling of how these internal and externals states jointly affect movement will provide additional insights into the energetic costs of movement and benefits associated with achieving process-driven goals.  相似文献   

9.
The principal interactions leading to the emergence of order in swarms of marching locust nymphs was studied both experimentally, using small groups of marching locusts in the lab, and using computer simulations. We utilized a custom tracking algorithm to reveal fundamental animal-animal interactions leading to collective motion. Uncovering this behavior introduced a new agent-based modeling approach in which pause-and-go motion is pivotal. The behavioral and modeling findings are largely based on motion-related visual sensory inputs obtained by the individual locust. Results suggest a generic principle, in which intermittent animal motion can be considered as a sequence of individual decisions as animals repeatedly reassess their situation and decide whether or not to swarm. This interpretation implies, among other things, some generic characteristics regarding the build-up and emergence of collective order in swarms: in particular, that order and disorder are generic meta-stable states of the system, suggesting that the emergence of order is kinetic and does not necessarily require external environmental changes. This work calls for further experimental as well as theoretical investigation of the neural mechanisms underlying locust coordinative behavior.  相似文献   

10.

Background

Cancer invasion is a multi-step process which coordinates interactions between tumor cells with mechanotransduction towards the surrounding matrix, resulting in distinct cancer invasion strategies. Defined by context, mesenchymal tumors, including melanoma and fibrosarcoma, develop either single-cell or collective invasion modes, however, the mechanical and molecular programs underlying such plasticity of mesenchymal invasion programs remain unclear.

Methods

To test how tissue anatomy determines invasion mode, spheroids of MV3 melanoma and HT1080 fibrosarcoma cells were embedded into 3D collagen matrices of varying density and stiffness and analyzed for migration type and efficacy with matrix metalloproteinase (MMP)-dependent collagen degradation enabled or pharmacologically inhibited.

Results

With increasing collagen density and dependent on proteolytic collagen breakdown and track clearance, but independent of matrix stiffness, cells switched from single-cell to collective invasion modes. Conversion to collective invasion included gain of cell-to-cell junctions, supracellular polarization and joint guidance along migration tracks.

Conclusions

The density of the extracellulair matrix (ECM) determines the invasion mode of mesenchymal tumor cells. Whereas fibrillar, high porosity ECM enables single-cell dissemination, dense matrix induces cell–cell interaction, leader–follower cell behavior and collective migration as an obligate protease-dependent process.

General significance

These findings establish plasticity of cancer invasion programs in response to ECM porosity and confinement, thereby recapitulating invasion patterns of mesenchymal tumors in vivo. The conversion to collective invasion with increasing ECM confinement supports the concept of cell jamming as a guiding principle for melanoma and fibrosarcoma cells into dense tissue.This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

11.
Over recent years, modelling approaches from nutritional ecology (known as Nutritional Geometry) have been increasingly used to describe how animals and some other organisms select foods and eat them in appropriate amounts in order to maintain a balanced nutritional state maximising fitness. These nutritional strategies profoundly affect the physiology, behaviour and performance of individuals, which in turn impact their social interactions within groups and societies. Here, we present a conceptual framework to study the role of nutrition as a major ecological factor influencing the development and maintenance of social life. We first illustrate some of the mechanisms by which nutritional differences among individuals mediate social interactions in a broad range of species and ecological contexts. We then explain how studying individual‐ and collective‐level nutrition in a common conceptual framework derived from Nutritional Geometry can bring new fundamental insights into the mechanisms and evolution of social interactions, using a combination of simulation models and manipulative experiments.  相似文献   

12.
Collective cell migration is regulated by a complex set of mechanical interactions and cellular mechanisms. Collective migration emerges from mechanisms occurring at single cell level, involving processes like contraction, polymerization and depolymerization, of cell–cell interactions and of cell–substrate adhesion. Here, we present a computational framework which simulates the dynamics of this emergent behavior conditioned by substrates with stiffness gradients. The computational model reproduces the cell’s ability to move toward the stiffer part of the substrate, process known as durotaxis. It combines the continuous formulation of truss elements and a particle-based approach to simulate the dynamics of cell–matrix adhesions and cell–cell interactions. Using this hybrid approach, researchers can quickly create a quantitative model to understand the regulatory role of different mechanical conditions on the dynamics of collective cell migration. Our model shows that durotaxis occurs due to the ability of cells to deform the substrate more in the part of lower stiffness than in the stiffer part. This effect explains why cell collective movement is more effective than single cell movement in stiffness gradient conditions. In addition, we numerically evaluate how gradient stiffness properties, cell monolayer size and force transmission between cells and extracellular matrix are crucial in regulating durotaxis.  相似文献   

13.
Méhes E  Mones E  Németh V  Vicsek T 《PloS one》2012,7(2):e31711
Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion.  相似文献   

14.
Cell migration in healthy and diseased systems is a combination of single and collective cell motion. While single cell motion has received considerable attention, our understanding of collective cell motion remains elusive. A new computational framework for the migration of groups of cells in three dimensions is presented, which focuses on the forces acting at the microscopic scale and the interactions between cells and their extracellular matrix (ECM) environment. Cell-cell adhesion, resistance due to the ECM and the factors regulating the propulsion of each cell through the matrix are considered. In particular, our approach emphasizes the role of receptors that mediate cell-cell and cell-matrix interactions, and examines how variation in their properties induces changes in cellular motion. As an important case study, we analyze two interacting cells. Our results show that the dynamics of cell pairs depends on the magnitude and the stochastic nature of the forces. Stronger intercellular stability is generally promoted by surface receptors that move. We also demonstrate that matrix resistance, cellular stiffness and intensity of adhesion contribute to migration behaviors in different ways, with memory effects present that can alter pair motility. If adhesion weakens with time, our findings show that cell pair break-up depends strongly on the way cells interact with the matrix. Finally, the motility for cells in a larger cluster (size 50 cells) is examined to illustrate the full capabilities of the model and to stress the role of cellular pairs in complex cellular structures. Overall, our framework shows how properties of cells and their environment influence the stability and motility of cellular assemblies. This is an important step in the advancement of the understanding of collective motility, and can contribute to knowledge of complex biological processes involving migration, aggregation and detachment of cells in healthy and diseased systems.  相似文献   

15.
Swarming and the expression of phase polyphenism are defining characteristics of locust species. Increases in local population density mediate morphological, physiological and behavioural changes within individuals, which correlate with mass marching of juveniles in migratory bands and flying swarms of adults. The Australian plague locust (Chortoicetes terminifera) regularly forms migratory bands and swarms, but is claimed not to express phase polyphenism and has accordingly been used to argue against a central role for phase change in locust swarming. We demonstrate that juvenile C. terminifera express extreme density-dependent behavioural phase polyphenism. Isolated-reared juveniles are sedentary and repelled by conspecifics, whereas crowd-reared individuals are highly active and are attracted to conspecifics. In contrast to other major locust species, however, behavioural phase change does not accumulate across generations, but shifts completely within an individual''s lifetime in response to a change in population density.  相似文献   

16.
During outbreaks, locust swarms can contain millions of insects travelling thousands of kilometers while devastating vegetation and crops. Such large-scale spatial organization is preceded locally by a dramatic density-dependent phenotypic transition in multiple traits. Behaviourally, low-density 'solitarious' individuals avoid contact with one another; above a critical local density, they undergo a rapid behavioural transition to the 'gregarious phase' whereby they exhibit mutual attraction. Although proximate causes of this phase polyphenism have been widely studied, the ultimate driving factors remain unclear. Using an individual-based evolutionary model, we reveal that cannibalism, a striking feature of locust ecology, could lead to the evolution of density-dependent behavioural phase-change in juvenile locusts. We show that this behavioural strategy minimizes risk associated with cannibalistic interactions and may account for the empirically observed persistence of locust groups during outbreaks. Our results provide a parsimonious explanation for the evolution of behavioural plasticity in locusts.  相似文献   

17.
Collective motion and cannibalism in locust migratory bands   总被引:2,自引:0,他引:2  
Plagues of mass migrating insects such as locusts are estimated to affect the livelihood of one in ten people on the planet [1]. Identification of generalities in the mechanisms underlying these mass movements will enhance our understanding of animal migration and collective behavior while potentially contributing to pest-management efforts. We provide evidence that coordinated mass migration in juvenile desert locusts (Schistocerca gregaria) is influenced strongly by cannibalistic interactions. Individuals in marching bands tend to bite others but risk being bitten themselves. Reduction of individuals' capacity to detect the approach of others from behind through abdominal denervation (1) decreases their probability to start moving, (2) dramatically reduces the mean proportion of moving individuals in groups, and (3) significantly increases cannibalism. Similarly, occlusion of the rear visual field inhibits individuals' propensity to march. Abdomen denervation did not influence the behavior of isolated locusts. When within groups, abdominal biting and the sight of others approaching from behind triggers movement, creating an autocatalytic feedback that results in directed mass migration. This "forced march" driven by cannibalistic interactions suggests that we need to reassess our view of both the selection pressure and mechanism that can result in the coordinated motion of such large insect groups.  相似文献   

18.
Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels.  相似文献   

19.
The collective migration of cells in the form of cohesive tissues is a hallmark of both morphogenesis and repair. The extrinsic cues that direct these complex migrations usually act by regulating the dynamics of a specific subset of cells, those at the leading edge. Given that normally the function of tissue migration is to lay down multicellular structures, such as branched epithelial networks or sensory organs, it is surprising how little is known about the mechanisms that organize cells behind the leading edge. Cells of the zebrafish lateral line primordium switch from mesenchyme-like leader cells to epithelial rosettes that develop into mechanosensory organs. Here, we show that this transition is regulated by an Fgf signaling circuit that is active within the migrating primordium. Point sources of Fgf ligand drive surrounding cells towards a ;non-leader' fate by increasing their epithelial character, a prerequisite for rosette formation. We demonstrate that the dynamic expression of Fgf ligands determines the spatiotemporal pattern of epithelialization underlying sensory organ formation in the lateral line. Furthermore, this work uncovers a surprising link between internal tissue organization and collective migration.  相似文献   

20.
A hallmark of the desert locust's ancient and deserved reputation as a devastating agricultural pest is that of the long-distance, multi-generational migration of locust swarms to new habitats. The bacterial symbionts that reside within the locust gut comprise a key aspect of its biology, augmenting its immunity and having also been reported to be involved in the swarming phenomenon through the emission of attractant volatiles. However, it is still unclear whether and how these beneficial symbionts are transmitted vertically from parent to offspring. Using comparative 16S rRNA amplicon sequencing and direct experiments with engineered bacteria, we provide evidence for vertical transmission of locust gut bacteria. The females may perform this activity by way of inoculation of the egg-pod's foam plug, through which the larvae pass upon hatching. Furthermore, analysis of the composition of the foam revealed chitin to be its major component, along with immunity-related proteins such as lysozyme, which could be responsible for the inhibition of some bacteria in the foam while allowing other, more beneficial, strains to proliferate. Our findings reveal a potential vector for the transgenerational transmission of symbionts in locusts, which contributes to the locust swarm's ability to invade and survive in new territories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号