首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The expression of bone morphogenetic proteins (BMPs) and their cognate receptors (BMPRs) in osteochondromas has not been investigated. We determined the immunohistochemical localization and distribution of BMP-2/4, -6 and -7; BMP receptors BMPR-1A, BMPR-1B and BMPR-2; signal transducing proteins phosphorylated Smad1/5/8; and BMP antagonist noggin in the cartilaginous cap of solitary (SO) and multiple (MO) human osteochondromas and compared these with bovine growth plate and articular cartilage. The distribution and localization patterns for BMP-6, BMP-7, BMPR-1A and BMPR-2 were similar between the cartilaginous cap and the growth plate. BMP-2/4 and BMPR-1B were present throughout the growth plate. However, BMP-2/4 and phosphorylated Smad1/5/8 were mainly detected in proliferating chondrocytes of the cartilaginous cap. Also, BMPR-1B was found in hypertrophic chondrocytes of SO and proliferating chondrocytes of MO. Noggin was observed in resting chondrocytes and, to a lesser extent, in clustered proliferating chondrocytes in SO. On the other hand, noggin in MO was observed in proliferating chondrocytes. Since BMPs can stimulate proliferation and hypertrophic differentiation of chondrocytes, these findings suggest that there is an imbalance of BMP-2/4 and noggin interactions that may lead to abnormal regulation of chondrocyte proliferation and differentiation in the cartilaginous cap of human osteochondromas.  相似文献   

2.
A high concentration of bone morphogenetic proteins (BMPs) stimulates myogenic progenitor cells to undergo heterotopic osteogenic differentiation. However, the physiological role of the Smad signaling pathway during terminal muscle differentiation has not been resolved. We report here that Smad1/5/8 was phosphorylated and activated in undifferentiated growing mouse myogenic progenitor Ric10 cells without exposure to any exogenous BMPs. The amount of phosphorylated Smad1/5/8 was severely reduced during precocious myogenic differentiation under the high cell density culture condition even in growth medium supplemented with a high concentration of serum. Inhibition of the Smad signaling pathway by dorsomorphin, an inhibitor of Smad activation, or noggin, a specific antagonist of BMP, induced precocious terminal differentiation of myogenic progenitor cells in a cell density-dependent fashion even in growth medium. In addition, Smad1/5/8 was transiently activated in proliferating myogenic progenitor cells during muscle regeneration in rats. The present results indicate that the Smad signaling pathway is involved in a critical switch between growth and differentiation of myogenic progenitor cells both in vitro and in vivo. Furthermore, precocious cell density-dependent myogenic differentiation suggests that a community effect triggers the terminal muscle differentiation of myogenic cells by quenching the Smad signaling.  相似文献   

3.
4.
Bone morphogenetic protein (BMP)2 and BMP4 are involved in the development of many tissues. In this study, we show that BMP2/4 signaling is involved in thymocyte development. Our data suggest that termination of BMP2/4 signaling is necessary for differentiation of CD44(+)CD25(-)CD4(-)CD8(-) double negative (DN) cells along the T cell lineage. BMP2 and BMP4 are produced by the thymic stroma and the requisite BMP receptor molecules (BMPR-1A, BMPR-1B, BMPR-II), and signal transduction molecules (Smad-1, -5, -8, and -4) are expressed by DN thymocytes. BMP4 inhibits thymocyte proliferation, enhances thymocyte survival, and arrests thymocyte differentiation at the CD44(+)CD25(-) DN stage, before T cell lineage commitment. Neutralization of endogenous BMP2 and BMP4 by treatment with the antagonist Noggin promotes and accelerates thymocyte differentiation, increasing the expression of CD2 and the proportion of CD44(-)CD25(-) DN cells and CD4(+)CD8(+) double-positive cells. Our study suggests that the BMP2/4 pathway may function in thymic homeostasis by regulating T cell lineage commitment and differentiation.  相似文献   

5.
6.
Bone morphogenetic proteins (BMPs) can either promote growth of embryonic muscle by expanding the Pax-3-expressing muscle precursor population or restrict its development by inducing apoptosis. Follistatin, a proposed BMP antagonist, is expressed in embryonic muscle. Deficiency in Follistatin results in muscle defects and postnatal asphyxia. Here, we report that during chick limb development Follistatin enhances BMP-7 action to induce muscle growth but prevents the ability of BMP-7 to induce apoptosis and muscle loss. Follistatin, unlike another BMP-binding protein, Noggin, promotes Pax-3 expression and transiently delays muscle differentiation and thus exerts proliferative signalling during muscle development. We provide data which show that Follistatin binds BMP-7 and BMP-2 at low affinities and that the binding is reversible. These data suggest that Follistatin acts to present BMPs to myogenic cells at a concentration that permits stimulation of embryonic muscle growth.  相似文献   

7.
8.
Bone morphogenetic proteins (BMPs) play a pivotal role during vertebrate embryogenesis and organogenesis, and have also been described to function in regulating cell fate and determination in self-renewing tissues in adults. Recent results have demonstrated that the different components of the BMP2/4 signaling pathway are expressed in the human thymus. In this study, we provide evidence that BMP4 and IL-7 interplay is important in the maintenance of the human thymic progenitor population. Intrathymic CD34+ cells express BMP receptors (BMPRIA, BMPRIB, ActRIA, BMPRII), signal transduction molecules (Smad1, 5, 8 and 4), and produce BMP4. Neutralization of endogenous BMP4 by treatment with the antagonist Noggin reduces thymic precursor cell survival, and the addition of exogenous BMP4 decreases their proliferation. The treatment of chimeric human-mouse fetal thymus organ cultures with BMP4 inhibits cell expansion, arrests thymocyte differentiation, and leads to the accumulation of human CD34+ precursor cells. This effect is mainly attributed to the ability of BMP4 to counteract the IL-7-induced proliferation and differentiation of CD34+ cells. BMP4 down-regulates in the precursor cell population the expression of CD127 and inhibits the IL-7-dependent STAT5 phosphorylation. In addition, BMP signaling is promoted by IL-7. Our results also demonstrate that in thymic progenitors BMPs act downstream of Sonic Hedgehog, previously described to function as a maintenance factor for human intrathymic CD34+ precursor cells.  相似文献   

9.
10.
11.
肌卫星细胞在失重肌萎缩中的可塑性变化及机制   总被引:1,自引:0,他引:1  
肌卫星细胞在骨骼肌生长发育和出生后骨骼肌损伤修复中起着重要的作用,但是有关肌萎缩中肌卫星细胞的可塑性变化、作用及其机制尚不清楚.本研究采用小鼠尾悬吊模拟失重效应诱导失重肌萎缩,动态分析了失重肌萎缩发生过程中不同类型肌纤维的肌卫星细胞数量和增殖、分化潜能可塑性的改变,发现在失重肌萎缩过程中,处于安静状态的肌卫星细胞显著增多、激活增殖的肌卫星细胞显著减少,而具有成肌分化潜能的肌卫星细胞有持续减少趋势.此外,在失重肌萎缩比目鱼肌单根肌纤维移出的体外培养中,证明了失重肌萎缩肌纤维肌卫星细胞可塑性降低的特征性变化.进一步,通过对比分析Smad3基因敲除及其同窝野生型小鼠,在失重肌萎缩中肌卫星细胞可塑性的差异性变化,揭示了Smad3在调控失重肌萎缩肌卫星细胞可塑性变化中的关键作用.  相似文献   

12.
13.
During endochondral ossification, two secreted signals, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP), have been shown to form a negative feedback loop regulating the onset of hypertrophic differentiation of chondrocytes. Bone morphogenetic proteins (BMPs), another family of secreted factors regulating bone formation, have been implicated as potential interactors of the Ihh/PTHrP feedback loop. To analyze the relationship between the two signaling pathways, we used an organ culture system for limb explants of mouse and chick embryos. We manipulated chondrocyte differentiation by supplementing these cultures either with BMP2, PTHrP and Sonic hedgehog as activators or with Noggin and cyclopamine as inhibitors of the BMP and Ihh/PTHrP signaling systems. Overexpression of Ihh in the cartilage elements of transgenic mice results in an upregulation of PTHrP expression and a delayed onset of hypertrophic differentiation. Noggin treatment of limbs from these mice did not antagonize the effects of Ihh overexpression. Conversely, the promotion of chondrocyte maturation induced by cyclopamine, which blocks Ihh signaling, could not be rescued with BMP2. Thus BMP signaling does not act as a secondary signal of Ihh to induce PTHrP expression or to delay the onset of hypertrophic differentiation. Similar results were obtained using cultures of chick limbs. We further investigated the role of BMP signaling in regulating proliferation and hypertrophic differentiation of chondrocytes and identified three functions of BMP signaling in this process. First we found that maintaining a normal proliferation rate requires BMP and Ihh signaling acting in parallel. We further identified a role for BMP signaling in modulating the expression of IHH: Finally, the application of Noggin to mouse limb explants resulted in advanced differentiation of terminally hypertrophic cells, implicating BMP signaling in delaying the process of hypertrophic differentiation itself. This role of BMP signaling is independent of the Ihh/PTHrP pathway.  相似文献   

14.

Background

The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors.

Results

Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation.

Conclusion

Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.  相似文献   

15.
Both BMPs and Wnts play important roles in the regulation of bone formation. We examined the molecular mechanism regulating cross-talk between BMPs and Wnts in the osteoblastic differentiation of C2C12 cells. Canonical Wnts (Wnt1 and Wnt3a) but not non-canonical Wnts (Wnt5a and Wnt11) synergistically stimulated ALP activity in the presence of BMP-4. Wnt3a and BMP-4 synergistically stimulated the expression of type I collagen and osteonectin. However, Wnt3a did not stimulate ALP activity that was induced by a constitutively active BMP receptor or Smad1. Noggin and Dkk-1 suppressed the synergistic effect of BMP-4 and Wnt3a, but Smad7 did not. Overexpression of β-catenin did not affect BMP-4-induced ALP activity. By contrast, inhibition or stimulation of GSK3β activity resulted in either stimulation or suppression of ALP activity, respectively, in the presence of BMP-4. Taken together, these findings suggest that BMPs and canonical Wnts may regulate osteoblastic differentiation, especially at the early stages, through a GSK3β-dependent but β-catenin-independent mechanism.  相似文献   

16.
Bone morphogenetic proteins (BMPs) are key regulators of cell fate decisions during embryogenesis and tissue homeostasis. BMPs signal through a coordinated assembly of two types of transmembrane serine/threonine kinase receptors to induce Smad1/5/8 plus non-Smad pathways, such as MAPK and Akt. The recent discovery of BMP receptor inhibitors opened new avenues to study specific BMP signalling and to delineate this effect from TGF-β and Activin signalling. Here we present comprehensive and quantitative analyses on both canonical and non-Smad mediated BMP signalling under Dorsomorphin (DM) and LDN-193189 (LDN) treatment conditions. We demonstrate for the first time, that both compounds affect not only the Smad but also the non-Smad signalling pathways induced by either BMP2, BMP6 or GDF5. The activation of p38, ERK1/2 and Akt in C2C12 cells was inhibited by DM and LDN. In addition “off-target” effects on all branches of BMP non-Smad signalling are presented. From this we conclude that the inhibition of BMP receptors by DM and more efficiently by LDN-193189 affects all known BMP induced signalling cascades.  相似文献   

17.
BMP/Smad信号通路与哺乳动物卵泡发生   总被引:2,自引:0,他引:2  
王伟  王少兵  徐银学 《遗传》2009,31(3):245-254
BMPs属于TGF-b超家族成员, 在调节哺乳动物的生长、细胞增殖和分化等方面有很广泛的生物学功能。越来越多的证据显示, BMPs在雌性哺乳动物生殖, 尤其在卵泡发生过程中发挥重要作用。Smads蛋白是BMP家族细胞内信号转导分子, 可将BMPs胞外信号从细胞膜传递入细胞核。文章对BMPs、BMP/Smad信号通路和BMP如何被调节进行概述, 并重点对BMP/Smad信号通路在卵泡发生过程中所起的调控作用进行综述。  相似文献   

18.
Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross‐talks with BMP9 and regulates BMP9‐induced osteogenic differentiation. We find that EGF potentiates BMP9‐induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG‐1478 and AG‐494 in a dose‐ and time‐dependent manner. Furthermore, EGF significantly augments BMP9‐induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9‐induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up‐regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross‐talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine.  相似文献   

19.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We previously demonstrated that bone morphogenetic protein (BMP) 9 is one of the most potent and yet least characterized BMPs that are able to induce osteogenic differentiation of MSCs both in vitro and in vivo. Here, we conducted gene expression-profiling analysis and identified that Hey1 of the hairy/Enhancer of split-related repressor protein basic helix-loop-helix family was among the most significantly up-regulated early targets in BMP9-stimulated MSCs. We demonstrated that Hey1 expression was up-regulated at the immediate early stage of BMP9-induced osteogenic differentiation. Chromatin immunoprecipitation analysis indicated that Hey1 may be a direct target of the BMP9-induced Smad signaling pathway. Silencing Hey1 expression diminished BMP9-induced osteogenic differentiation both in vitro and in vivo and led to chondrogenic differentiation. Likewise, constitutive Hey1 expression augmented BMP9-mediated bone matrix mineralization. Hey1 and Runx2 were shown to act synergistically in BMP9-induced osteogenic differentiation, and Runx2 expression significantly decreased in the absence of Hey1, suggesting that Runx2 may function downstream of Hey1. Accordingly, the defective osteogenic differentiation caused by Hey1 knockdown was rescued by exogenous Runx2 expression. Thus, our findings suggest that Hey1, through its interplay with Runx2, may play an important role in regulating BMP9-induced osteoblast lineage differentiation of MSCs.  相似文献   

20.
Porcine satellite cells represent an ideal model system for studying the cellular and molecular basis regulating myogenic stem cell proliferation and differentiation and for exploring the experimental conditions for myoblast transplantation. Here, we investigated the effects of mechano growth factor (MGF), a spliced variant of the IGF-1 gene, on porcine satellite cells. We show that MGF potently stimulated proliferation while inhibited differentiation of porcine satellite cells. MGF-treatment acutely down-regulates the expression of myogenic determination factor (MyoD) and the cyclin-dependent kinase inhibitor p21. MGF-treatment also markedly reduced the overall expression of cyclin B1 and key factors of the myogenic regulatory and myocyte enhancer families, including Myogenein and MEF2A. Taken together, the gene expression data from MGF-treated porcine satellite cells are in favor of a molecular model in which MGF inhibits porcine satellite cell differentiation by down-regulating either the activity or expression of MyoD, which, in turn, suppresses the expression of key genes required for cell cycle progression and differentiation, such as p21, Myogenin, and MEF2. Overall, our findings are in support of the previous suggestion that MGF may be used in vivo and in vitro to promote proliferation of myogenic stem cells to prevent and treat age-related muscle degenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号