共查询到20条相似文献,搜索用时 0 毫秒
1.
Higa A Mulot A Delom F Bouchecareilh M Nguyên DT Boismenu D Wise MJ Chevet E 《The Journal of biological chemistry》2011,286(52):44855-44868
The protein-disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) is reportedly overexpressed in numerous cancers and plays a role in cancer development. However, to date the molecular functions of AGR2 remain to be characterized. Herein we have identified AGR2 as bound to newly synthesized cargo proteins using a proteomics analysis of endoplasmic reticulum (ER) membrane-bound ribosomes. Nascent protein chains that translocate into the ER associate with specific ER luminal proteins, which in turn ensures proper folding and posttranslational modifications. Using both imaging and biochemical approaches, we confirmed that AGR2 localizes to the lumen of the ER and indirectly associates with ER membrane-bound ribosomes through nascent protein chains. We showed that AGR2 expression is controlled by the unfolded protein response and is in turn is involved in the maintenance of ER homeostasis. Remarkably, we have demonstrated that siRNA-mediated knockdown of AGR2 significantly alters the expression of components of the ER-associated degradation machinery and reduces the ability of cells to cope with acute ER stress, properties that might be relevant to the role of AGR2 in cancer development. 相似文献
2.
Satoshi Horimoto Satoshi Ninagawa Tetsuya Okada Hibiki Koba Takehiro Sugimoto Yukiko Kamiya Koichi Kato Shunichi Takeda Kazutoshi Mori 《The Journal of biological chemistry》2013,288(44):31517-31527
Proteins misfolded in the endoplasmic reticulum (ER) are cleared by the ubiquitin-dependent proteasome system in the cytosol, a series of events collectively termed ER-associated degradation (ERAD). It was previously shown that SEL1L, a partner protein of the E3 ubiquitin ligase HRD1, is required for degradation of misfolded luminal proteins (ERAD-Ls substrates) but not misfolded transmembrane proteins (ERAD-Lm substrates) in both mammalian and chicken DT40 cells. Here, we analyzed ATF6, a type II transmembrane glycoprotein that serves as a sensor/transducer of the unfolded protein response, as a potential ERAD-Lm substrate in DT40 cells. Unexpectedly, degradation of endogenous ATF6 and exogenously expressed chicken and human ATF6 by the proteasome required SEL1L. Deletion analysis revealed that the luminal region of ATF6 is a determinant for SEL1L-dependent degradation. Chimeric analysis showed that the luminal region of ATF6 confers SEL1L dependence on type I transmembrane protein as well. In contrast, degradation of other known type I ERAD-Lm substrates (BACE457, T-cell receptor-α, CD3-δ, and CD147) did not require SEL1L. Thus, ATF6 represents a novel type of ERAD-Lm substrate requiring SEL1L for degradation despite its transmembrane nature. In addition, endogenous ATF6 was markedly stabilized in wild-type cells treated with kifunensine, an inhibitor of α1,2-mannosidase in the ER, indicating that degradation of ATF6 requires proper mannose trimming. Our further analyses revealed that the five ERAD-Lm substrates examined are classified into three subgroups based on their dependence on mannose trimming and SEL1L. Thus, ERAD-Lm substrates are degraded through much more diversified mechanisms in higher eukaryotes than previously thought. 相似文献
3.
The endoplasmic reticulum (ER) is a central organelle for protein biosynthesis, folding, and traffic. Perturbations in ER homeostasis create a condition termed ER stress and lead to activation of the complex signaling cascade called the unfolded protein response (UPR). Recent studies have documented that the UPR coordinates multiple signaling pathways and controls various physiologies in cells and the whole organism. Furthermore, unresolved ER stress has been implicated in a variety of metabolic disorders, such as obesity and type 2 diabetes. Therefore, intervening in ER stress and modulating signaling components of the UPR would provide promising therapeutics for the treatment of human metabolic diseases. 相似文献
4.
Meilian Liu Hongzhi Chen Li Wei Derong Hu Kun Dong Weiping Jia Lily Q. Dong Feng Liu 《The Journal of biological chemistry》2015,290(16):10143-10148
Adiponectin is an adipokine with insulin-sensitizing and anti-inflammatory functions. We previously reported that adiponectin multimerization and stability are promoted by the disulfide bond A oxidoreductase-like protein (DsbA-L) in cells and in vivo. However, the precise mechanism by which DsbA-L regulates adiponectin biosynthesis remains elusive. Here we show that DsbA-L is co-localized with the endoplasmic reticulum (ER) marker protein disulfide isomerase and the mitochondrial marker MitoTracker. In addition, DsbA-L interacts with the ER chaperone protein Ero1-Lα in 3T3-L1 adipocytes. In silico analysis and truncation mapping studies revealed that DsbA-L contains an ER targeting signal at its N terminus. Deletion of the first 6 residues at the N terminus greatly impaired DsbA-L localization in the ER. Overexpression of the wild type but not the ER localization-defective mutant of DsbA-L protects against thapsigargin-induced ER stress and adiponectin down-regulation in 3T3-L1 adipocytes. In addition, overexpression of the wild type but not the ER localization-defective mutant of DsbA-L promotes adiponectin multimerization. Together, our results reveal that DsbA-L is localized in both the mitochondria and the ER in adipocytes and that its ER localization plays a critical role in suppressing ER stress and promoting adiponectin biosynthesis and secretion. 相似文献
5.
Andrea Schott Stéphanie Ravaud Sabrina Keller Jens Radzimanowski Corrado Viotti Stefan Hillmer Irmgard Sinning Sabine Strahl 《The Journal of biological chemistry》2010,285(23):18113-18121
Stresses increasing the load of unfolded proteins that enter the endoplasmic reticulum (ER) trigger a protective response termed the unfolded protein response (UPR). Stromal cell-derived factor2 (SDF2)-type proteins are highly conserved throughout the plant and animal kingdoms. In this study we have characterized AtSDF2 as crucial component of the UPR in Arabidopsis thaliana. Using a combination of biochemical and cell biological methods, we demonstrate that SDF2 is induced in response to ER stress conditions causing the accumulation of unfolded proteins. Transgenic reporter plants confirmed induction of SDF2 during ER stress. Under normal growth conditions SDF2 is highly expressed in fast growing, differentiating cells and meristematic tissues. The increased production of SDF2 due to ER stress and in tissues that require enhanced protein biosynthesis and secretion, and its association with the ER membrane qualifies SDF2 as a downstream target of the UPR. Determination of the SDF2 three-dimensional crystal structure at 1.95 Å resolution revealed the typical β-trefoil fold with potential carbohydrate binding sites. Hence, SDF2 might be involved in the quality control of glycoproteins. Arabidopsis sdf2 mutants display strong defects and morphological phenotypes during seedling development specifically under ER stress conditions, thus establishing that SDF2-type proteins play a key role in the UPR. 相似文献
6.
Anais Mockel Cathy Obringer Theodorus B. M. Hakvoort Mathias Seeliger Wouter H. Lamers Corinne Stoetzel Hélène Dollfus Vincent Marion 《The Journal of biological chemistry》2012,287(44):37483-37494
Ciliopathies, a class of rare genetic disorders, present often with retinal degeneration caused by protein transport defects between the inner segment and the outer segment of the photoreceptors. Bardet-Biedl syndrome is one such ciliopathy, genetically heterogeneous with 17 BBS genes identified to date, presenting early onset retinitis pigmentosa. By investigating BBS12-deprived retinal explants and the Bbs12−/− murine model, we show that the impaired intraciliary transport results in protein retention in the endoplasmic reticulum. The protein overload activates a proapoptotic unfolded protein response leading to a specific Caspase12-mediated death of the photoreceptors. Having identified a therapeutic window in the early postnatal retinal development and through optimized pharmacological modulation of the unfolded protein response, combining three specific compounds, namely valproic acid, guanabenz, and a specific Caspase12 inhibitor, achieved efficient photoreceptor protection, thereby maintaining light detection ability in vivo. 相似文献
7.
8.
9.
10.
Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of “equivalent light” that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. 相似文献
11.
Jimmy R. Thériault Helen J. Palmer Debra D. Pittman 《Biochemical and biophysical research communications》2011,409(3):500
Metformin (Met), an AMP-activated protein kinase (AMPK) inducer, is primarily transported by organic cation transporters expressed at the surface of renal proximal tubular epithelial cells. However, the implication of Met in renal function remains poorly understood. Interestingly, AICAR, another AMPK inducer, has been shown to inhibit the Unfolded Protein Response (UPR) generated by tunicamycin in cardiomyocytes in an AMPK-kinase dependent fashion suggesting metformin may also block the UPR. In this work, we have examined the effect of metformin on the expression of UPR-related markers (GRP94 and CHOP) induced by glucosamine (GlcN), 2-deoxyglucose (2-DOG) and tunicamycin (TUNI) in renal proximal tubular epithelial cells and in murine mesangial cells. Met attenuated GRP94 and CHOP expression induced by GlcN and 2-DOG, but not TUNI only in renal epithelial cells, even though the AMPK activation was observed in both renal epithelial and mesangial cells. Met did not require the contribution of its AMPK kinase inducing activity to block UPR markers expression. This report has identified a novel inhibitory function of metformin on UPR, which may have a beneficial impact on kidney homeostatic function. 相似文献
12.
Raghuwansh P. Sah Sushil K. Garg Ajay K. Dixit Vikas Dudeja Rajinder K. Dawra Ashok K. Saluja 《The Journal of biological chemistry》2014,289(40):27551-27561
The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies. 相似文献
13.
The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58(IPK) expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58(IPK) induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response. 相似文献
14.
Singaravelu K Nelson C Bakowski D de Brito OM Ng SW Di Capite J Powell T Scorrano L Parekh AB 《The Journal of biological chemistry》2011,286(14):12189-12201
Store-operated Ca2+ channels in the plasma membrane (PM) are activated by the depletion of Ca2+ from the endoplasmic reticulum (ER) and constitute a widespread and highly conserved Ca2+ influx pathway. After store emptying, the ER Ca2+ sensor STIM1 forms multimers, which then migrate to ER-PM junctions where they activate the Ca2+ release-activated Ca2+ channel Orai1. Movement of an intracellular protein to such specialized sites where it gates an ion channel is without precedence, but the fundamental question of how STIM1 migrates remains unresolved. Here, we show that trafficking of STIM1 to ER-PM junctions and subsequent Ca2+ release-activated Ca2+ channel activity is impaired following mitochondrial depolarization. We identify the dynamin-related mitochondrial protein mitofusin 2, mutations of which causes the inherited neurodegenerative disease Charcot-Marie-Tooth IIa in humans, as an important component of this mechanism. Our results reveal a molecular mechanism whereby a mitochondrial fusion protein regulates protein trafficking across the endoplasmic reticulum and reveals a homeostatic mechanism whereby mitochondrial depolarization can inhibit store-operated Ca2+ entry, thereby reducing cellular Ca2+ overload. 相似文献
15.
One of the main functions of the unfolded protein response is to ensure disposal of large protein aggregates that accumulate in the lumen of the endoplasmic reticulum (ER) whereas avoiding, at least under nonlethal levels of ER stress, cell death. When tightly controlled, autophagy-dependent ER-associated degradation (ERAD(II)) allows the cell to recover from the transient accumulation of protein aggregates; however, when unchecked, it can be detrimental and cause autophagic cell death/type 2 cell death. Here we show that IRE1/XBP1 controls the induction of autophagy/ERAD(II) during the unfolded protein response by activating the ER membrane transporter SLC33A1/AT-1, which ensures continuous supply of acetyl-CoA into the lumen of the ER. Failure to induce AT-1 leads to widespread autophagic cell death. Mechanistically, the regulation of the autophagic process involves N(ε)-lysine acetylation of Atg9A. 相似文献
16.
17.
The Hsp70 superfamily is a ubiquitous chaperone class that includes conventional and large Hsp70s. BiP is the only conventional Hsp70 in the endoplasmic reticulum (ER) whose functions include: assisting protein folding, targeting misfolded proteins for degradation, and regulating the transducers of the unfolded protein response. The ER also possesses a single large Hsp70, the glucose-regulated protein of 170 kDa (Grp170). Like BiP it is an essential protein, but its cellular functions are not well understood. Here we show that Grp170 can bind directly to a variety of incompletely folded protein substrates in the ER, and as expected for a bona fide chaperone, it does not interact with folded secretory proteins. Our data demonstrate that Grp170 and BiP associate with similar molecular forms of two substrate proteins, but while BiP is released from unfolded substrates in the presence of ATP, Grp170 remains bound. In comparison to conventional Hsp70s, the large Hsp70s possess two unique structural features: an extended C-terminal α-helical domain and an unstructured loop in the putative substrate binding domain with an unknown function. We find that in the absence of the α-helical domain the interaction of Grp170 with substrates is reduced. In striking contrast, deletion of the unstructured loop results in increased binding to substrates, suggesting the presence of unique intramolecular mechanisms of control for the chaperone functions of large Hsp70s. 相似文献
18.
Jaime D. Blais King-Tung Chin Ester Zito Yuhong Zhang Nimrod Heldman Heather P. Harding Deborah Fass Colin Thorpe David Ron 《The Journal of biological chemistry》2010,285(27):20993-21003
Endoplasmic reticulum oxidation 1 (ERO1) is a conserved eukaryotic flavin adenine nucleotide-containing enzyme that promotes disulfide bond formation by accepting electrons from reduced protein disulfide isomerase (PDI) and passing them on to molecular oxygen. Although disulfide bond formation is an essential process, recent experiments suggest a surprisingly broad tolerance to genetic manipulations that attenuate the rate of disulfide bond formation and that a hyperoxidizing ER may place stressed cells at a disadvantage. In this study, we report on the development of a high throughput in vitro assay for mammalian ERO1α activity and its application to identify small molecule inhibitors. The inhibitor EN460 (IC50, 1.9 μm) interacts selectively with the reduced, active form of ERO1α and prevents its reoxidation. Despite rapid and promiscuous reactivity with thiolates, EN460 exhibits selectivity for ERO1. This selectivity is explained by the rapid reversibility of the reaction of EN460 with unstructured thiols, in contrast to the formation of a stable bond with ERO1α followed by displacement of bound flavin adenine dinucleotide from the active site of the enzyme. Modest concentrations of EN460 and a functionally related inhibitor, QM295, promote signaling in the unfolded protein response and precondition cells against severe ER stress. Together, these observations point to the feasibility of targeting the enzymatic activity of ERO1α with small molecule inhibitors. 相似文献
19.
20.
Katsuyuki Imamura Shingo Maeda Ichiro Kawamura Kanehiro Matsuyama Naohiro Shinohara Yuhei Yahiro Satoshi Nagano Takao Setoguchi Masahiro Yokouchi Yasuhiro Ishidou Setsuro Komiya 《The Journal of biological chemistry》2014,289(14):9865-9879
Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis. 相似文献