首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.  相似文献   

3.
We have previously reported that a human nuclear factor, probably corresponding to the USF/MLTF protein [1,2], is able to bind specifically to a DNA sequence present in DNA replicated at the onset of S-phase [3]. Here we demonstrate that the same factor binds also to several other similar sequences, present in eukaryotic and viral genomes. Mutations or methylation in a CpG dinucleotide, central in the palindromic binding site, completely abolish binding. Furthermore, we present evidence for the existence of at least two other nuclear proteins in human cells with the same DNA binding specificity. The data presented suggest a strong evolutionary conservation, among distantly related organisms, of the binding motif, which is probably the target of a number of nuclear factors that share the same DNA binding specificity albeit in the context of different functions.  相似文献   

4.
A number of herbicide classes, including the s-triazines and ureas (atrazine, diuron) inhibit photosynthetic electron transport via a direct interaction with the QB-protein. This protein, also known as the 32-kDa protein or herbicide binding protein, is believed to bind the plastoquinone QB, which functions as the second stable electron acceptor at the reducing side of Photosystem II. The site of covalent attachment of the photoaffinity herbicide analog azido-[14C]atrazine to the QB-protein of spinach chloroplast thylakoid membranes has been determined. Two amino acid residues are labeled; one residue is methionine-214, the other lies between histidine-215 and arginine-225. Both residues are within a region of the amino acid sequence which is highly conserved between the QB-protein and the L and M reaction center proteins of Rhodopseudomonas capsulata and R. sphaeroides. This region includes the site of a mutation which results in diuron resistance in Chlamydomonas reinhardi (valine-219). However, this region is well removed from point mutations at phenylalanine-255 (which gives rise to atrazine resistance in C. reinhardi) and at serine-264, (which results in extreme atrazine resistance in C. reinhardi and naturally occurring weed biotypes). The patterns of labeling and mutation imply that the quinone and herbicide binding site is formed by at least two protein domains.  相似文献   

5.
6.
BACKGROUND: Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus (SARS-CoV). It is an enveloped, single-stranded, plus-sense RNA virus with a genome of approximately 30 kb. The structural proteins E, M and N of SARS-CoV play important roles during host cell entry and viral morphogenesis and release. Therefore, we have studied whether expression of these structural proteins can be down-regulated using an antisense technique. METHODS: Vero E6 cells were transfected with plasmid constructs containing exons of the SARS-CoV structural protein E, M or N genes or their exons in frame with the reporter protein EGFP. The transfected cell cultures were treated with antisense phosphorothioated oligonucleotides (antisense PS-ODN, 20mer) or a control oligonucleotide by addition to the culture medium. RESULTS: Among a total of 26 antisense PS-ODNs targeting E, M and N genes, we obtained six antisense PS-ODNs which could sequence-specifically reduce target genes expression by over 90% at the concentration of 50 microM in the cell culture medium tested by RT-PCR. The antisense effect was further proved by down-regulating the expression of the fusion proteins containing the structural proteins E, M or N in frame with the reporter protein EGFP. In Vero E6 cells, the antisense effect was dependent on the concentrations of the antisense PS-ODNs in a range of 0-10 microM or 0-30 microM. CONCLUSIONS: The antisense PS-ODNs are effective in downregulation of SARS. The findings indicate that antisense knockdown of SARS could be a useful strategy for treatment of SARS, and could also be suitable for studies of the pathological function of SARS genes in a cellular model system.  相似文献   

7.
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.  相似文献   

8.
A variety of lipid-binding proteins contain a recently described motif, designated FFAT (two phenylalanines in an acidic tract), which binds to vesicle-associated-membrane protein-associated protein (VAP). VAP is a conserved integral membrane protein of the endoplasmic reticulum that contains at its amino terminus a domain related to the major sperm protein of nematode worms. Here we have studied the FFAT-VAP interaction in Saccharomyces cerevisiae, where the VAP homologue Scs2 regulates phospholipid metabolism via an interaction with the FFAT motif of Opi1. By introducing mutations at random into Scs2, we found that mutations that abrogated binding to FFAT were clustered in the most highly conserved region. Using site-directed mutagenesis, we identified several critical residues, including two lysines widely separated in the primary sequence. By examining all other conserved basic residues, we identified a third residue that was moderately important for binding FFAT. Modeling VAP on the known structure of major sperm protein showed that the critical residues form a patch on a positively charged face of the protein. In vivo functional studies of SCS22, a second SCS2-like gene in S. cerevisiae, showed that SCS2 was the dominant gene in the regulation of Opi1, with a minor contribution from SCS22. We then established that reduction in the affinity of Scs2 mutants for FFAT correlated well with loss of function, indicating the importance of these residues for binding FFAT motifs. Finally, we found that human VAP-A could substitute for Scs2 but that it functioned poorly, suggesting that other factors modulate the binding of Scs2 to proteins with FFAT motifs.  相似文献   

9.
10.
Properly metabolized globin synthesis and iron uptake are indispensable for erythroid cell differentiation and maturation. Mitochondrial participation is crucial in the process of haeme synthesis for cytochromes and haemoglobin. We studied the final biosynthesis site of haemoglobin using an ultrastructural approach, with erythroid cells obtained from rabbit embryos, in order to compare these results with those of animals treated with saponine or phenylhydrazine. Our results are similar to those obtained in assays with adult mammals, birds, amphibians, reptiles and fish, after induction of haemolytic anaemia. Therefore, the treatment did not interfere with the process studied, confirming our previous findings. Immunoelectron microscopy showed no labelling of mitochondria or other cellular organelles supposedly involved in the final biosynthesis of haemoglobin molecules, suggesting instead that it occurs free in the cytoplasm immediately after the liberation of haeme from the mitochondria, by electrostatic attraction between haeme and globin chains.  相似文献   

11.
A highly conserved sequence in yeast heat shock gene promoters.   总被引:16,自引:2,他引:14       下载免费PDF全文
  相似文献   

12.
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.  相似文献   

13.
Interleukin-18 (IL-18) binding protein is a soluble decoy receptor for IL-18 which efficiently antagonizes biological functions of IL-18 in vitro and in vivo. Since regulation of IL-18 activity likely contributes to the pathogenesis of inflammatory diseases as well as malignancies, we investigated gene expression of IL-18 binding protein (IL-18BP) in different human cell systems, namely in the keratinocyte cell line HaCaT, in the colon carcinoma cell line DLD-1, and in primary renal mesangial cells. In unstimulated cells only minute amounts of mRNA coding for IL-18 binding protein were detectable. However, in all three cell types gene expression was markedly upregulated by interferon-gamma (IFN-gamma). IL-18 is recognized as a pivotal mediator of IFN-gamma production. Therefore, the present data imply that activity of IL-18 is modulated by a negative feedback mechanism which is mediated by IFN-gamma-induced IL-18 binding protein.  相似文献   

14.
The presence of a CA repeat within the 3'-untranslated region (UTR) of the dystrophin gene has been reported previously in several species. Because microsatellites showing high cross-species homology can be conveniently used as markers in those species for which detailed linkage maps have not yet been developed, we evaluated whether the CA repeat could be amplified from a wide variety of mammalian species. Using a single pair of canine-specific oligonucleotide primers, we successfully amplified the 3'-UTR from 18 different carnivore and six additional species (human, chimpanzee, goat, cow, rabbit and mouse) and show conservation of the CA repeat in the dystrophin gene from a wide range of evolutionarily diverse mammalian species.  相似文献   

15.
Jiang Y  Zhang R  Sun P  Tang G  Zhang X  Wang X  Guo X  Wang Q  Li X 《PloS one》2011,6(11):e27871
Detecting and interpreting certain system-level characteristics associated with human population genetic differences is a challenge for human geneticists. In this study, we conducted a population genetic study using the HapMap genotype data to identify certain special Gene Ontology (GO) categories associated with high/low genetic difference among 11 Hapmap populations. Initially, the genetic differences in each gene region among these populations were measured using allele frequency, linkage disequilibrium (LD) pattern, and transferability of tagSNPs. The associations between each GO term and these genetic differences were then identified. The results showed that cellular process, catalytic activity, binding, and some of their sub-terms were associated with high levels of genetic difference, and genes involved in these functional categories displayed, on average, high genetic diversity among different populations. By contrast, multicellular organismal processes, molecular transducer activity, and some of their sub-terms were associated with low levels of genetic difference. In particular, the neurological system process under the multicellular organismal process category had low levels of genetic difference; the neurological function also showed high evolutionary conservation between species in some previous studies. These results may provide a new insight into the understanding of human evolutionary history at the system-level.  相似文献   

16.
Binding of the signal recognition particle (SRP) to signal sequences during translation leads to an inhibition of polypeptide elongation known as translation arrest. The arrest activity is mediated by a discrete domain comprised of the Alu portion of SRP RNA and a 9 and 14 kDa polypeptide heterodimer (SRP9/14). Although very few nucleotides in SRP RNA are conserved throughout evolution, the remarkable conservation of G24, which resides in the region of SRP9/14 interaction, suggests that it is essential for translation arrest. To understand the functional significance of the G24 residue, we made single base substitutions in SRP RNA at this position and analyzed the ability of the mutants to bind SRP9/14 and to reconstitute functional SRPs. Mutation of G24 to C reduced binding to SRP9/14 by at least 50-fold, whereas mutation to A and U reduced binding approximately 2- and 5-fold respectively. The mutant RNAs could nevertheless assemble into SRPs at high subunit concentrations. SRPs reconstituted with mutant RNAs were not significantly defective in translation arrest assays, indicating that the conserved guanosine does not interact directly with the translational machinery. Taken together, these results demonstrate that G24 plays an important role in the translation arrest function of SRP by mediating high affinity binding of SRP9/14.  相似文献   

17.
Transforming growth factor beta (TGFbeta), a multifunctional cytokine associated with vascular injury, is a potent inhibitor of cell proliferation. The current results demonstrate that the TGFbeta-induced growth arrest of vascular smooth muscle cells (VSMCs) is associated with cyclin A downregulation. TGFbeta represses the cyclin A gene through a cyclic AMP (cAMP) response element, which complexes with the cAMP response element binding protein (CREB). The CREB-cyclin A promoter interaction is hindered by TGFbeta, preceded by a TGFbeta receptor-dependent CREB phosphorylation. Induction of CREB phosphorylation with forskolin or 6bnz-cAMP mimics TGFbeta's inhibitory effect on cyclin A expression. Conversely, inhibition of CREB phosphorylation with a CREB mutant in which the phosphorylation site at serine 133 was changed to alanine (CREB-S133A) upregulated cyclin A gene expression. Furthermore, the CREB-S133A mutant abolished TGFbeta-induced CREB phosphorylation, cyclin A downregulation, and growth inhibition. Since we have previously shown that the novel PKC isoform protein kinase C delta (PKCdelta) is activated by TGFbeta in VSMCs, we tested the role of this kinase in CREB phosphorylation and cyclin A downregulation. Inhibition of PKCdelta by a dominant-negative mutant or by targeted gene deletion blocked TGFbeta-induced CREB phosphorylation and cyclin A downregulation. Taken together, our data indicate that phosphorylation of CREB stimulated by TGFbeta is a critical step leading to the inhibition of cyclin A expression and, thus, VSMC proliferation.  相似文献   

18.
19.
Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a Caenorhabditis elegans metalloprotease gene, nas-37, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The NAS-37 protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS-37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, Haemonchus contortus molts by digesting a ring of cuticle at the tip of the nose. Incubating Haemonchus larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When Haemonchus cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the Haemonchus cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes.  相似文献   

20.
The S-locus-specific glycoprotein of Brassica and the gene encoding it (the SLG gene) are thought to be involved in determining self-incompatibility phenotype in this genus. It has been shown that the Brassica genome contains multiple SLG-related sequences. We report here the cloning and characterization of a Brassica oleracea gene, SLR1, which corresponds to one of these SLG-related sequences. Like the SLG gene, SLR1 is developmentally regulated. It is maximally expressed in the papillar cells of the stigma at the same stage of flower development as the onset of the incompatibility response. Unlike SLG, the SLR1 genes isolated from different S-allele homozygotes are highly conserved, and this gene, which appears to be ubiquitous in crucifers, is expressed in self-compatible strains as well as self-incompatible strains. Most importantly, we show that the SLR1 gene is not linked to the S-locus and therefore cannot be a determinant of S-allele specificity in Brassica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号