首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mating signals act as behavioral barriers to gene flow in many animal taxa, yet little is known about how signal evolution within populations contributes to the formation of these barriers. Although variation in mating signals among populations is known to affect mating behavior, there is no direct evidence that the evolution of mating signals changes signal effectiveness within a natural population. Making use of historical recordings of bird song, I found that both male and female white-crowned sparrows (Zonotrichia leucophrys) respond more strongly to current than to historical songs, indicating that historical songs are less effective as signals in the current contexts of both mate choice and male-male competition. Finding that historical signals are less effective suggests that signal evolution within populations may ultimately contribute to the formation of behavioral barriers to gene flow between populations.  相似文献   

2.
The divergence of conspecific recognition signals (CRS) among isolated populations facilitates the evolution of behavioral barriers to gene flow. The influence of CRS evolution on signal effectiveness in isolated populations can be assessed by testing the salience of changes in CRS from surviving ancestral populations but founder events are rarely detected. The population history of the North Island (NI) saddleback Philesturnus rufusater is absolutely known following conservation translocations which increased the number of populations from 1 to 15. With one exception there is no gene flow between these populations. The translocations have generated interisland divergence of male rhythmical song (MRS), a culturally transmitted CRS. We conducted an experimental test of behavioral discrimination in NI saddlebacks exposed to familiar and unfamiliar MRS and found that responses were significantly stronger for familiar MRS, consistent with a model of contemporary cultural evolution leading to discrimination between geographic song variants. Significantly, this result demonstrates the rapid tempo with which discrimination of CRS might evolve within isolated populations and supports both bottleneck and cultural mutation hypotheses in CRS evolution. The evolutionary implications of contemporary cultural evolution in the production and perception of CRS merit debate on the time frames over which conservation management is evaluated.  相似文献   

3.
Local environments can act as selective agents on some characteristics of birds’ songs, whereas other song traits may not reflect local genetic adaptation. Geographic variation in songs of two Australian bird species (red‐capped robins Petroica goodenovii, western gerygones Gerygone fusca) was studied to examine one component of the ‘habitat‐dependent selection’ hypothesis. This hypothesis suggests that: (1) the detailed spectral characteristics of male songs are an evolved response to local habitat conditions affecting signal propagation and detection and (2) parallel evolution of other fitness traits sets up the potential for assortative mating by female choice. To examine the first part of the hypothesis, I made comparisons among widespread mainland populations and an island population using two levels of analysis: a typological analysis of song morphology (phonology: notes, syllables, syntax, temporal pattern, repertoires) and a spectral analysis of acoustic characteristics of songs (mean frequency, Wiener entropy, frequency modulation) using an automated procedure of feature extraction (Sound Analysis Pro). Spectral analysis was also used to extract values of the same acoustic features from the background sound environment of each recorded population. The typological analysis revealed no differences among mainland populations of either species, but large differences between mainland songs and those on the island. In contrast, the spectral analysis revealed acoustic divergence among populations, both mainland and island. For both species, Wiener entropy of songs correlated negatively with that of the ambient sound environment, consistent with predictions of the habitat‐dependent selection hypothesis of environmental selection on signal design.  相似文献   

4.
Many plants and animals advertise unpalatability through warning signals in the form of colour and shape. Variation in warning signals within local populations is not expected because they are subject to directional selection. However, mounting evidence of warning signal variation within local populations suggests that other selective forces may be acting. Moreover, different selective pressures may act on the individual components of a warning signal. At present, we have a limited understanding about how multiple selection processes operate simultaneously on warning signal components, and even less about their temporal and spatial dynamics. Here, we examined temporal variation of several wing warning signal components (colour, UV‐reflectance, signal size and pattern) of two co‐occurring colour morphs of the aposematic wood tiger moth (Parasemia plantaginis). Sampling was carried out in four geographical regions over three consecutive years. We also evaluated each morph's temporal genetic structure by analysing mitochondrial sequence data and nuclear microsatellite markers. Our results revealed temporal differences between the morphs for most signal components measured. Moreover, variation occurred differently in the fore‐ and hindwings. We found no differences in the genetic structure between the morphs within years and regions, suggesting single local populations. However, local genetic structure fluctuated temporally. Negative correlations were found between variation produced by neutrally evolving genetic markers and those of the different signal components, indicating a non‐neutral evolution for most warning signal components. Taken together, our results suggest that differential selection on warning signal components and fluctuating population structure can be one explanation for the maintenance of warning signal variation in this aposematic species.  相似文献   

5.
We examine acoustic mating preferences of a focal population at four different scales of divergence: within the population, between populations in the same genetic group, between populations in different genetic groups and between different species. At all scales there is substantial genetic divergence, variation in mating signals and preferences are influenced by signal variation. There is, however, no support for the hypothesis that mating preferences accumulate predictably with genetic distance. Females preferred the local conspecific call to the foreign conspecific call in about one-third of the experiments, and preferred the local call to all of the heterospecific calls tested. But there was no significant relationship between the variation in the strength of preference and genetic distance either among conspecific populations, or among heterospecific species. Thus, in this study macroevolutionary patterns are not apparent at the microevolutionary scale.  相似文献   

6.
Previous studies have shown that ortolan buntings (Emberiza hortulana) exhibit apparent dialect variation. Neighbouring males typically share the same final phrase of a simple two-part song. Consequently, the final phrase was considered to be the dialect cue important for discriminating between males from a local population and strangers. Recently, it was shown that in an isolated and fragmented population of the ortolan buntings in Norway there was no local dialect in the above-mentioned sense. Norwegian males often had song types with different final phrases in their repertoire, and had larger repertoires and a lower level of song type sharing than in other populations. It was experimentally revealed that only local songs (L) evoked a strong response in Norwegian males, while these birds did not respond strongly to foreign (F) or hybrid songs composed of local and foreign initial and final phrases in any composition (i.e. both FL and LF songs). These results suggest that, in the Norwegian population, the final phrase of the song is not a sufficient cue for local song dialect recognition. This paper is a further study in which we tested the response of the ortolan bunting males to L, F, FL and LF songs in a typical continuous population (in Poland) in which males share the same single final phrase, i.e. have a common dialect. We found that ortolan bunting males in Poland responded with similar strength to L, FL and LF songs. The majority of males did not respond as strongly to playback of only F songs. Our results suggest that a common final phrase for a population should not be treated as the only signal of ‘locality’. Our results show clear asymmetry in response to hybrid songs with non-local phrases in different populations.  相似文献   

7.
Aim In birds, differentiation of acoustic characters is an important mechanism of reproductive isolation that may lead to an ethological–acoustic barrier, resulting in the formation of new species. We examined acoustic variation in mainland citril and insular Corsican finch populations, with the aim of assessing the degree of acoustic differentiation between both members of the superspecies Carduelis [citrinella] and documenting possible variation between local subpopulations that are geographically isolated. Location We chose study sites throughout the geographical ranges of citril and Corsican finches. For the citril finch, we obtained samples from the Black Forest (Germany), the Cevennes (France) and the Pyrenees (Spain); for the Corsican finch, we obtained samples from the islands Capraia and Sardinia (Italy) and Corsica (France). Methods We analysed frequent contact calls and elements of the perch song. Vocalization patterns of the study populations were compared by means of discriminant and hierarchical cluster analyses. Results There were significant differences in vocalization characteristics of perch songs and contact calls, which permitted unambiguous discrimination of citril and Corsican finch populations. However, we also detected significant differences in contact calls between mainland citril finch subpopulations. There was a pattern of clinal variation in vocalization: short, steeply modulated signals in the northern part of the geographical range (Black Forest) and long, shallowly modulated signals in the southern part (Pyrenees). Main conclusions Acoustically, mainland citril and insular Corsican finches separate well in their contact calls and perch songs. However, variation in the two vocalization patterns between subpopulations of mainland citril finches indicates that acoustic characteristics can evolve very quickly, not only on islands but also on the mainland. Local habitat differences may play a crucial role in the rapid evolution of these signals under full or partial isolation of small subpopulations. To judge the importance of signal variation as a pre‐mating isolating barrier, future studies will have to determine whether members of the distinct subpopulations are able to match their signals to each other if they re‐meet, and whether intraspecific species recognition is still possible.  相似文献   

8.
Understanding the divergence of behavioural signals in isolated populations is critical to knowing how certain barriers to gene flow can develop. For many bird species, songs are essential for conspecific recognition and mate choice. Measuring the rate of song divergence in natural populations is difficult, but translocations of endangered birds to isolated islands for conservation purposes can yield insights, as the age and source of founder populations are completely known. We found significant and rapid evolution in the structure and diversity of bird song in North Island saddlebacks, Philesturnus rufusater, in New Zealand, with two distinct lineages evolving in < 50 years. The strong environmental filters of serial translocations resulted in cultural bottlenecks that generated drift and reduced song variability within islands. This rapid divergence coupled with loss of song diversity has important implications for the behavioural evolution of this species, demonstrating previously unrecognised biological consequences of conservation management.  相似文献   

9.
Vocal learning is thought to have evolved in three clades of birds (parrots, hummingbirds, and oscine passerines), and three clades of mammals (whales, bats, and primates). Behavioural data indicate that, unlike other suboscine passerines, the three-wattled bellbird Procnias tricarunculata (Cotingidae) is capable of vocal learning. Procnias tricarunculata shows conspicuous vocal ontogeny, striking geographical variation in song, and rapid temporal change in song within a population. Deprivation studies of vocal development in P. tricarunculata are impractical. Here, we report evidence from mitochondrial DNA sequences and nuclear microsatellite loci that genetic variation within and among the four allopatric breeding populations of P. tricarunculata is not congruent with variation in vocal behaviour. Sequences of the mitochondrial DNA control region document extensive haplotype sharing among localities and song types, and no phylogenetic resolution of geographical populations or behavioural groups. The vocally differentiated, allopatric breeding populations of P. tricarunculata are only weakly genetically differentiated populations, and are not distinct taxa. Mitochondrial DNA and microsatellite variation show small (2.9% and 13.5%, respectively) but significant correlation with geographical distance, but no significant residual variation by song type. Estimates of the strength of selection that would be needed to maintain the observed geographical pattern in vocal differentiation if songs were genetically based are unreasonably high, further discrediting the hypothesis of a genetic origin of vocal variation. These data support a fourth, phylogenetically independent origin of avian vocal learning in Procnias. Geographical variations in P. tricarunculata vocal behaviour are likely culturally evolved dialects.  相似文献   

10.
The multidimensional nature of animal signals makes acoustic traits potentially subject to different determinants. The Amazonian frogs Allobates nidicola and Allobates masniger have an allopatric distribution, occurring along the left and right sides of the Madeira River, respectively. These are two sister, phenotypically similar species whose eggs are deposited and develop entirely in a terrestrial nest. In this study, we analyzed 2,000 advertisement calls recorded from ten localities across Central Amazonia, in order to understand the role of determinants of acoustic signal variability at the population and species levels. We assessed, through nested analyses of variance, the differentiation of six characters of this sexual signal among populations and between interfluves. Moreover, we measured the degree of variability and the extent of temperature- and body size-induced plasticity in call traits. We also tested for isolation-by-distance effects in phenotypic differentiation through Mantel tests. Coefficients of variation were higher among than within populations for all call measurements. Spectral call properties were more distinctive than temporal traits among populations and species. Advertisement call traits showed strong temperature-induced plasticity (e.g., 45?% of the variation in note duration). In contrast, the effects of body size were restricted to frequency-related characters. The river barrier effect was significant among all the acoustic variables analyzed even after controlling for male body size. Geography (sampling locality) and body size also jointly affected call variability. No correlation between geographical and acoustic distances among populations was observed, suggesting that local stabilizing selective pressures have an important role in the evolution of call differentiation.  相似文献   

11.
Auditory communication in humans and other animals frequently takes place in noisy environments with many co‐occurring signallers. Receivers are thus challenged to rapidly recognize salient auditory signals and filter out irrelevant sounds. Most bird species produce a variety of complex vocalizations that function to communicate with other members of their own species and behavioural evidence broadly supports preferences for conspecific over heterospecific sounds (auditory species recognition). However, it remains unclear whether such auditory signals are categorically recognized by the sensory and central nervous system. Here, we review 53 published studies that compare avian neural responses between conspecific versus heterospecific vocalizations. Irrespective of the techniques used to characterize neural activity, distinct nuclei of the auditory forebrain are consistently shown to be repeatedly conspecific selective across taxa, even in response to unfamiliar individuals with distinct acoustic properties. Yet, species‐specific neural discrimination is not a stereotyped auditory response, but is modulated according to its salience depending, for example, on ontogenetic exposure to conspecific versus heterospecific stimuli. Neuromodulators, in particular norepinephrine, may mediate species recognition by regulating the accuracy of neuronal coding for salient conspecific stimuli. Our review lends strong support for neural structures that categorically recognize conspecific signals despite the highly variable physical properties of the stimulus. The available data are in support of a ‘perceptual filter’‐based mechanism to determine the saliency of the signal, in that species identity and social experience combine to influence the neural processing of species‐specific auditory stimuli. Finally, we present hypotheses and their testable predictions, to propose next steps in species‐recognition research into the emerging model of the neural conceptual construct in avian auditory recognition.  相似文献   

12.
The southern green stink bug, Nezara viridula, has a complex mate recognition system that implicates chemical and acoustic signals. To localise a sexual partner acoustically, a male and female alternate between the male courtship song (MCrS) and the female calling song type 1 (FCS1). Although previous research has revealed that both signals show geographical variability, until now no studies have explored the form of this variability. We analysed the temporal and spectral characteristics of MCrS and FCS1 pulse trains of males and females from a French and a Guadeloupe population. Pulse train duration of the MCrS varied within and between populations. Likewise, spectral and temporal parameters of FCS1 varied within and between the two populations. Although females did not show any behavioural responses to pre-recorded MCrS, males responded to pre-recorded FCS1 by emitting a higher number of MCrS per minute. Furthermore, males modulated the repetition rate of their MCrS pulse trains to match those of the FCS1. All males responded to FCS1 from French and Guadeloupe females despite the temporal differences in these songs; however, they responded with a shorter latency and a higher rate of MCrS/FCS1 pulse trains to the songs of females from their own population. In choice experiments with two alternatives, responses to FCS1 were inhibited when males received a simultaneous female call from another Pentatomidae sympatric species, Acrosternum hilare. We conclude that, although males prefer FCS1 from their own population, they recognise FCS1 from French and Guadeloupe N. viridula females as species-specific female calls. Variability of vibratory signals might play a role in mate choice.  相似文献   

13.
The songs of the six different species of Darwin's ground finches (Geospiza) on the Galápagos Islands are difficult to distinguish unambiguously because of high levels of intraspecific variation and interspecific similarity in some cases. We recorded the responses of males on five islands to playback of (a) the two main conspecific song types, A and B, (b) local conspecific and heterospecific song, and (c) local and foreign dialects. Males reacted equally strongly to different conspecific song types (A and B), but responded significantly more strongly to local conspecific song than to either heterospecific song or foreign dialect. These results are inconsistent with earlier suggestions that song types subdivide Geospiza populations and that Geospiza song lacks species-distinctness because of loss-of-contrast or character convergence. The apparent paradox of low song specificity and well-developed acoustic discrimination is discussed in the light of other data showing that close-range species recognition also depends on visual cues.  相似文献   

14.
The information code in the temporal and spectral characteristics of the substrate-borne communication signals produced by insects has been primarily studied in insects in the suborder Auchenorrhyncha. In the present study we investigated which of the female calling song (FCS) parameters in Nezara viridula (L.) (Heteroptera, Pentatomidae) are essential for recognition by conspecific males. In playback experiments we measured male vibrational responsiveness to FCS signals varying in the durations of pulse trains and inter-pulse train intervals, repetition times, duty cycles, and dominant frequencies, and determined the preference range for each specific parameter. Males were able to distinguish songs of different temporal and frequency parameters and responded best to values characteristic of the song of conspecific females. Signal recognition is achieved on the basis of two temporal filters tuned to the durations of the pulse train and inter-pulse train interval. Males responded best to the dominant frequency characteristic of conspecific songs, which are tuned to the resonant properties of the herbaceous plants used for intraspecific signal transmission during communication.  相似文献   

15.
Abstract. Vibrational alarm communication was studied in the New World, damp-wood termite Zootermopsis nevadensis (Isoptera: Termopsidae). Workers and soldiers react to disturbance such as sudden bright light or air currents by drumming their heads against the substratum. This drumming has been described as alarm signalling; its functional significance and perception by the nest mates, however, remained unclear. In the present study we analysed spectral and temporal properties and absolute amplitudes of the vibrational signals and used behavioural responses of the termites to determine the thresholds of the sense of vibration and to find out if and how the termites discriminate the conspecific alarm signals from the background noise.
The drumming signals are trains of pulses of vibrations of the substratum with a pulse repetition rate of about 20 Hz. The carrier frequency depends on the substratum; in the nests studied it was in the range 1–3 kHz. The highest vibrational amplitudes measured close to the signal emitters are usually about 10m/s2 (acceleration, RMS). The threshold of the behavioural response is about 1m/s2 over a wide range of frequencies (10 Hz to 5 kHz), indicating that the termites can detect these signals as vibrations of the substratum. The animals respond preferentially to temporal patterns similar those of the natural signals; temporal rather than spectral cues seem to be used for signal discrimination.  相似文献   

16.
Comparison of calling and courtship songs and mating strategies in different groups of Orthoptera shows that acoustic signals in bush crickets (Tettigonioidea) are used for searching conspecific mates at a distance, and song evolution is primarily driven by the acoustic surroundings and simultaneously singing other species. The role of sexual selection in the evolution of acoustic signals in bush crickets is much less important than in the evolution of other nonacoustic signals employed during direct contact. Acoustic signals of crickets (Grylloidea) are involved in both distant and short-range communication. Acoustic courtship signals, along with other courtship components, may offer the material for sexual selection, although, essentially, evolution of acoustic signals in crickets is determined by the acoustic surroundings. Acoustic communication in the grasshoppers of the subfamily Gomphocerinae is mainly a short-distance communication. Acoustic signals of Gomphocerinae are highly variable and elaborate in temporal parameters, and therefore can serve for evaluation of the mate "quality". Song evolution in this group is to a greater extent driven by sexual selection than by the acoustic surroundings and, therefore, could proceed faster than in other groups of Orthoptera and play a major role in speciation.  相似文献   

17.
Male brown-headed cowbirds (Molothrus ater) vocalize to females during pair formation, a period usually lasting several days. Males also vocalize to females in the seconds immediately prior to females' adopting copulatory postures. The two major classes of male vocalizations occurring during courtship and copulation are songs and flight whistles. Observations across the species' North American range suggest that the function of these two courtship vocalizations may differ geographically. Aviary observations of eastern and midwestern populations suggested, furthermore, that the precise timing of song and whistle used during copulation sequences differs, with flight whistles occurring most often after a copulatory posture but before the male mounts and the pair copulates. Such timing of the two signals suggested different proximate functions. Here, we report three experiments that addressed the communicative properties of the two signals in two midwestern populations. First, we tested females of the two populations in two playback experiments to determine copulatory responsiveness and discrimination of the two signals. We asked whether females of the two populations gave more copulatory responses to the playbacks of songs and flight whistles of males of their own population than to those of males of the other population, and whether females responded differently to songs than to whistles. In the third experiment, we observed courtship interactions among males and females from one population in a large aviary to assess the use of flight whistles in relation to courtship success. Females of both populations responded more frequently to playbacks of songs than to playbacks of flight whistles and showed reliably more responsiveness to local song variants. Thus, information in male song can be used by females to discriminate the local population. The aviary data revealed that the rate of flight whistling correlated strongly with male courtship success. Thus, the vocal antecedents to mating in midwestern cowbirds include close-range signaling to females followed by longer range signaling, perhaps to other males and to females other than the mate. Acoustic and behavioral differences between these two signals in diverse parts of the cowbirds' range suggest that the function of ‘speciestypical’ signals such as songs or whistles may not be fixed, a conclusion in keeping with the growing evidence of vocal and social mallcability in these brood parasitic birds.  相似文献   

18.
Songbirds have shown variation in vocalizations across different populations and different geographical ranges. Such variations can over time lead to divergence in song characteristics, sometimes referred to as dialects. House Wren (Troglodytes aedon) is one such widely distributed bird species that has shown variation in its song characteristics within different populations. Traditionally, such studies have been conducted using manual approaches for classification. In this work we explore the use of machine learning models that can assist in performing classification of bird songs at a conspecific level. Two machine learning techniques, the random forest and a shallow feed forward neural network, are fed with pre-computed sound features to classify vocal variation in House Wren species across different reported population groups and latitudinal areas. A randomized approach is employed to create balanced subsets of sounds from different locations for repeated classification runs in order to provide a reliable estimate of performance. It is observed that such an automated approach is able to classify variations in songs within House Wren with high accuracy. We were also able to confirm the latitudinal variation of House Wren songs reported in previous studies. Given these results, we believe, such a purely data-driven way of analyzing bird songs in general can provide useful hints to biologists on where to look for interesting patterns in order to understand the evolutionary divergence in song characteristics.  相似文献   

19.
Many plant species currently exist in fragmented populations of different sizes, while they also experience unpredictable climatic fluctuation over time. However, we still understand little about how plant demography responds to such spatial and temporal environmental variability. We studied population dynamics of an understory perennial herb Trillium camschatcense in the Tokachi plain of Hokkaido, Japan, where a significant effect of forest fragmentation on seedling recruitment was previously reported. Four populations across a range of fragment sizes were studied for 6 years, and the data were analyzed using matrix population models. Per capita fecundity (the number of recruits per plant) varied greatly among populations, but the variation in population growth rates (λ) was mainly driven by the variation in stasis and growth rates, suggesting that the general trend of reduced fecundity in fragmented populations may not be readily translated into subsequent dynamics. Temporal variation in λ among years was more than 2 times larger than spatial variation among populations, and this result was likely attributable to the contrasting response of correlation structures among demographic rates. The among-population variation in λ was dampened by negative covariation between matrix elements possibly due to density-dependent regulation as well as an inherent constraint that some elements are not independent, whereas positive covariation between matrix elements resulted in large temporal variation in λ. Our results show that population dynamics responded differently to habitat fragmentation and temporal variability of the environment, emphasizing the need to discriminate these spatial and temporal variations in demographic models. Although no populations were projected to be declining in stochastic simulations, correlation between current habitat size and plant density implies historical λ is positively related to habitat size.  相似文献   

20.
In singing insects, the song is an important component of the specific mate recognition system (SMRS). In communities of sympatric singing species, there is a partitioning of communication channels, the so-called “acoustic niches.” Within one community, the songs of different species always differ in temporal or frequency characters, i.e. occupy different acoustic niches. However, conspecific songs do not always act as an interspecific reproductive barrier, despite always being a SMRS component. The species that do not communicate acoustically due to allopatry, different timing of vocalization, inhabiting different biotopes, or unmatched food specializations can produce similar songs while forming reproductively isolated communities. Individuals of different sexes need not only to recognize a conspecific mate but also to evaluate its “quality.” The close-range signal (courtship song) provides more opportunities for choosing the “best” male than does the distant signal (calling song). In many species of Orthoptera, courtship includes not only acoustic but also vibrational, visual, chemical, and mechanical signals. An analysis of cricket songs showed the courtship songs to be on average more elaborate and variable than the calling songs. At the same time, due to the difference in mating behavior between the two groups, the acoustic component of courtship is used for mate quality evaluation to a greater extent in grasshoppers than in crickets. The courtship songs of grasshoppers are generally more elaborate in temporal structure than cricket songs; moreover, they may be accompanied by visual displays such as movements of various body parts. Thus, song evolution in grasshoppers is more strongly driven by sexual selection than that in crickets. According to the reinforcement hypothesis, the premating barrier between hybridizing species becomes stronger in response to reduced hybrid fitness. However, our behavioral experiments with two groups of hybridizing grasshopper species did not confirm the reinforcement hypothesis. We explain this, firstly, by a low level of genetic incompatibility between the hybridizing species and secondly, by high hybrid fitness when attracting a mate. A high competitive capability of hybrids may be accounted for by attractiveness of new elements in hybrid courtship songs. When we divide similar forms based on their songs, we in fact distinguish biological species using the criterion of their reproductive isolation. Acoustic differences between species are usually greater than morphological ones. Therefore, song analysis allows one to determine the real status of doubtful species-rank taxa, to distinguish species in a medley of sibling forms, and to reveal cryptic species in the cases when morphological studies fail to provide a univocal result. At the same time, songs are subject to intraspecific variation the range of which is different in different groups. Therefore, it is necessary to study which degree of difference corresponds to the species level before interpreting the status of some forms based on song comparisons. Besides, song similarities cannot indicate conspecificity of acoustically isolated forms; on the other hand, song differences between these forms prove that they are full-rank species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号