首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The causes and consequences of sexual dimorphism are major themes in biology. Here we explore the endocrine regulation of sexual dimorphism in horned beetles. Specifically, we explore the role of juvenile hormone (JH) in regulating horn expression in females of two species with regular sexual dimorphism for pronotal horns (females have much shorter horns than males) and a third species with a rare reversed sexual dimorphism for both pronotal and head horns (females have much larger horns in both body regions compared with males). Applications of the JH analog methoprene caused females of the two more typical species to grow significantly shorter pronotal horns than control females, whereas no consistent effect on pronotal horn development was detected in the third, sex-reversed species. Instead, females in this species showed an unexpected and significant increase in head horn expression in response to methoprene treatment. Lastly, horn shape was also affected in females of one of the regularly sexually dimorphic species, but in the opposite direction than horn length. Although methoprene exerted a feminizing effect on female horn length in this species, it significantly masculinized horn shape by inducing a peculiar shape change observed naturally only in males. Our results suggest that JH influences both overall size and shape of female horns, but does so flexibly and as a function of species, sex and horn location. We use our results to review current models on the role of endocrine mechanisms in development and evolution of horned beetle diversity.  相似文献   

2.
The process of sexual differentiation leaves genetically female individuals at risk of being masculinized by exogenous androgens. Previous research with sheep indicates that exposure to excess testosterone from Gestational Day (GD) 30 to GD 90 of the 147-day gestation masculinizes and defeminizes behavior as well as genitalia. Lower doses and shorter durations produce animals with varying degrees of genital virilization and alterations of the hypothalamic-pituitary-gonadal axis, but to our knowledge, the effects on complex behavior and its prediction by the amount of external virilization have not been explored. Previous research in rodents has suggested that sexual differentiation of the central nervous system and the external genitalia can be dissociated. Therefore, we hypothesized that the extent of virilization of external genitalia would not be predictive of the lack of female-typical, or the presence of male-typical, mating behavior. To test this hypothesis, we compared control females, females exposed to exogenous testosterone from GD 30 to GD 90 (T60 females) that have virilized genitalia, and females exposed to testosterone from GD 60 to GD 90 (T30 females) that have female-typical genitalia. Both natural behavioral estrus in the flock and hormonally controlled behavioral tests were used to explore reproductive behavior. The T60 and T30 females exhibited more masculinized reproductive behavior than the controls; however, the T30 females also exhibited feminine behavior. Neither testosterone-treated group was receptive or was mounted at rates comparable to those of controls. These data illustrate that variation in the timing or duration of exposure to prenatal testosterone during a critical period for masculinization can have variable effects on defeminization and that the effects of testosterone on genitalia are not entirely predictive of behavior.  相似文献   

3.
4.
Sex differences in the vertebrate brain (brain sex) are thought to develop owing to the tissue specific action of gonadal hormones similar to the development of secundary sex characteristics of the body. Small sex differences in body anatomy could, however, retrogradely control the sexual differentiation of the central nervous system. This possibility has so far been verified only for motorneuron pools, since the connectivity of sex‐specific higher brain areas to the sexual dimorphic periphery is frequently not well known. Here, we tested whether somatic sex differences feed back on higher brain areas by bilateral denervation of the syringeal musculature of zebra finches before, during, and after onset of estrogen‐sensitive sexual differentiation of forebrain vocal nuclei such as RA (nucleus robustus archistriatalis). In the zebra finch, the sound‐producing musculature (the syrinx), the syrinx motornucleus hypolossus pars tracheosyringealis (nXIIts), and the RA are much larger in males compared to females. Tract tracing studies revealed that the volume and neuron size distribution of the nXIIts was sexually dimorphic in intact but not in animals denervated as juveniles. In contrast, the volume of RA and size of RA neurons of denervated animals were highly sexually dimorphic. Furthermore, estrogen masculinized the RA of denervated females. Thus, sexual differentiation of the RA but not of the nXIIts appears independent of somatic sex differences. The syrinx muscles are, however, important for the soma size of those RA neurons that project to the nXIIts. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 220–231, 2000  相似文献   

5.
Sex differences in the vertebrate brain (brain sex) are thought to develop owing to the tissue specific action of gonadal hormones similar to the development of secondary sex characteristics of the body. Small sex differences in body anatomy could, however, retrogradely control the sexual differentiation of the central nervous system. This possibility has so far been verified only for motorneuron pools, since the connectivity of sex-specific higher brain areas to the sexual dimorphic periphery is frequently not well known. Here, we tested whether somatic sex differences feed back on higher brain areas by bilateral denervation of the syringeal musculature of zebra finches before, during, and after onset of estrogen-sensitive sexual differentiation of forebrain vocal nuclei such as RA (nucleus robustus archistriatalis). In the zebra finch, the sound-producing musculature (the syrinx), the syrinx motornucleus hypoglossus pars tracheosyringealis (nXIIts), and the RA are much larger in males compared to females. Tract tracing studies revealed that the volume and neuron size distribution of the nXIIts was sexually dimorphic in intact but not in animals denervated as juveniles. In contrast, the volume of RA and size of RA neurons of denervated animals were highly sexually dimorphic. Furthermore, estrogen masculinized the RA of denervated females. Thus, sexual differentiation of the RA but not of the nXIIts appears independent of somatic sex differences. The syrinx muscles are, however, important for the soma size of those RA neurons that project to the nXIIts.  相似文献   

6.
The naturally occurring sex difference in dendritic spine number on hypothalamic neurons offers a unique opportunity to investigate mechanisms establishing synaptic patterning during perinatal sensitive periods. A major advantage of the rat as a model of sexual differentiation is that treatment of neonatal females with estradiol will permanently induce the male phenotype. During the development of other systems, exuberant innervation is followed by activity-dependent pruning necessary for elimination of spurious synapses. In contrast, we demonstrate that estradiol-induced organization in the hypothalamus involves the induction of new synapses on dendritic spines. Activation of estrogen receptors by estradiol triggers a nongenomic activation of PI3 kinase that results in enhanced glutamate release from presynaptic neurons. Subsequent activation of ionotropic glutamate receptors activates MAP kinases, thereby inducing dendritic spine formation. These results reveal a transneuronal mechanism by which estradiol acts during a sensitive period to establish a profound and lasting sex difference in hypothalamic synaptic patterning.  相似文献   

7.
In rodent species, sexual differentiation of the brain for many reproductive processes depends largely on estradiol. This was recently confirmed again by using the α-fetoprotein knockout (AFP-KO) mouse model, which lacks the protective actions of α-fetoprotein against maternal estradiol and as a result represents a good model to determine the contribution of prenatal estradiol to the sexual differentiation of the brain and behavior. Female AFP-KO mice were defeminized and masculinized with regard to their neuroendocrine responses as well as sexual behavior. Since parental behavior is also strongly sexually differentiated in mice, we used the AFP-KO mouse model here to ask whether parental responses are differentiated prenatally under the influence of estradiol. It was found that AFP-KO females showed longer latencies to retrieve pups to the nest and also exhibited lower levels of crouching over the pups in the nest in comparison to WT females. In fact, they resembled males (WT and AFP-KO). Other measures of maternal behavior, for example the incidence of infanticide, tended to be higher in AFP-KO females than in WT females but this increase failed to reach statistical significance. The deficits observed in parental behavior of AFP-KO females could not be explained by any changes in olfactory function, novelty recognition or anxiety. Thus our results suggest that prenatal estradiol defeminizes the parental brain in mice.  相似文献   

8.
Temporal constraints on androgen regulated masculinization of three sexually dimorphic laryngeal properties--tension, fiber type, and fiber recruitment--were examined in Xenopus laevis frogs. Endocrine state was manipulated at PM0 when the larynx is similar in males and females, at PM2 when the larynx begins sexual differentiation, and at PM6 when sexual differentiation is complete. Removing the testes in developing males (PM0 or PM2) completely arrests laryngeal masculinization. Masculinization resumes when testosterone is replaced later in development (PM2 or PM6, respectively). Thus, testicular secretions, in particular androgens, are required for laryngeal masculinization. The ability of androgens to masculinize tension, fiber type, and fiber recruitment in developing and adult larynges was also determined. Five weeks of testosterone treatment in PM0 or PM2 males and females completely masculinizes laryngeal tension and fiber type, but only partially masculinizes fiber recruitment. However, fiber recruitment can be fully masculinized in PM6 males castrated at PM2. We conclude that androgen induced masculinization of tension and fiber type are not temporally constrained but that androgen induced masculinization of fiber recruitment is. Prolonged androgen treatment can override the temporal constraints on masculinization of the larynx. Testosterone treatment for more than 6 months fully masculinizes fiber recruitment in developing (PM0 or PM2) females. In addition, prolonged treatment (greater than 9 months) completely masculinizes tension, fiber type, and fiber recruitment in adult females; these properties were not fully masculinized by shorter (1-3 months) treatments in adult females. Testosterone induced masculinization in females is maintained for up to 8 months following testosterone removal; thus androgen effects are long lasting and possibly permanent.  相似文献   

9.
A three-phase experiment manipulated sexual experience and hormone exposure (perinatally and in adulthood) in female rats housed individually from weaning so as to limit peripubertal social and sexual experience. Noncontact partner preference for a male or estrous female rat was measured both before and after sexual experience, first while rats were under the influence of circulating testosterone propionate (TP) and later after priming them with ovarian hormones (estradiol benzoate and progesterone; EB & P). When implanted with TP capsules and tested while sexually naive, all groups of female rats preferred females to males without differing statistically. However, following three sexual experience sessions with estrous females, differences emerged between the masculinized and control groups in the magnitude of their female-directed preference, with masculinized females demonstrating a significantly greater preference for estrous females. Sexual experience with male rats under EB & P did not result in a significant shift in preference in any group. Histological assessment indicated that the volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) was increased by exposure to TP postnatally, and SDN-POA volume correlated positively with partner preference scores but only when rats were both sexually experienced and exposed to circulating TP in adulthood. These results suggest that sexual experience interacts with steroid exposure to shape partner preference.  相似文献   

10.
Our “Organizing Action” paper published in 1959 put forward the concept that prenatal exposure to testosterone masculinized the behavior of genetic female guinea pigs. Specifically, we proposed that testosterone or some metabolite acted on the central nervous tissues in which patterns of sexual behavior are organized. We later went on to demonstrate similar effects in rhesus monkeys by showing that play behavior by female monkeys prenatally treated with testosterone was masculinized as well. These findings support the organizing actions of androgens as a general process of sexual differentiation.  相似文献   

11.
Concentration of the hormone cortisol is often used as an indicator of stress, and chronically high cortisol levels are often associated with poor health. Among group living animals that compete for resources, agonistic social interactions can be expected to contribute to variation in cortisol levels within and among individuals over time. Reproductive tactics of males can change with individual quality, relatedness, and social structure, and affect cortisol levels. In gray-cheeked mangabey (Lophocebus albigena) groups, male rank is an important factor in social interactions, and males also move between groups while actively competing for females or sneaking copulations. During a 20-month study we observed the social behavior and collected 461 fecal samples from 24 adult male gray-cheeked mangabeys from five groups in Kibale National Park, Uganda. Aggressive interactions and the presence of females at the peak of sexual swelling were associated with elevated cortisol concentrations in all males. Independently, dominant (i.e., highest-ranking) males within groups had higher cortisol concentrations than subordinate males, and immigrant males had higher cortisol concentrations than dominant males.  相似文献   

12.
Female zebra finches given estradiol benzoate (EB) as nestlings and testosterone propionate (TP) as adults show masculinized sexual partner preference, preferring females instead of males. This suggests an organizational effect of EB on sexual partner preference in a socially monogamous species that pairs for life. It is not known whether there is an activational hormone effect on sexual partner preference in this species, or whether adult testosterone treatment is necessary for masculinized preference to be expressed. In this experiment females were injected with EB daily for the first 2 weeks posthatching. As adults they were given TP filled or empty implants. Subjects were then given two-choice preference tests with male vs female stimuli, in which singing as well as proximity to the stimuli was recorded, followed by tests in a group aviary for social behavior and pairing preference. Females with TP implants sang more than females with empty implants and were more aggressive toward other females. They did not, however, differ from females with empty implants in any measure of sexual partner preference. Neither group showed a marked preference for males; instead both groups were equally interested in males and females. Thus adult testosterone treatment is not necessary for early estrogen treated females to show a shift in sexual partner preference in the male-typical direction.  相似文献   

13.
Steroid hormones play an important role in regulating vertebrate sexual behavior. In frogs and toads, injections of exogenous gonadotropins, which stimulate steroid hormone production, are often used to induce reproductive behavior, but steroid hormones alone are not always sufficient. To determine which hormonal conditions promote sexual behavior in female túngara frogs, we assessed the effect of hormone manipulation on the probability of phonotaxis behavior toward conspecific calls in post-reproductive females. We injected females with human chorionic gonadotropin (HCG), estradiol, estradiol plus progesterone, saline, or HCG plus fadrozole (an aromatase blocker) and tested their responses to mating calls. We found that injections of HCG, estradiol, and estradiol plus progesterone all increased phonotaxis behavior, whereas injections of saline or HCG plus fadrozole did not. Since injections of estradiol alone were effective at increasing phonotaxis behavior, we concluded that estradiol is sufficient for the expression of phonotaxis behavior. Next, to determine if estradiol-injected females display the same behavioral preferences as naturally breeding females, we compared mating call preferences of naturally breeding females to those of post-reproductive females injected with estradiol. We found that, when injected with estradiol, females show similar call preferences as naturally breeding females, although they were less likely to respond across multiple phonotaxis tests. Overall, our results suggest that estradiol is sufficient for the expression of sexual responses to mating calls in túngara frogs. To our knowledge, ours is the only study to find that estradiol alone is capable of promoting phonotaxis behavior in a frog.  相似文献   

14.
Reproductive parasites such as Wolbachia are able to manipulate the reproduction of their hosts by inducing parthenogenesis, male-killing, cytoplasmic incompatibility or feminization of genetic males. Despite extensive studies, no underlying molecular mechanism has been described to date. The goal of this study was to establish a system with a single Wolbachia strain that feminizes two different isopod species to enable comparative analyses aimed at elucidating the genetic basis of feminization. It was previously suggested that Wolbachia wVulC, which naturally induces feminization in Armadillidium vulgare, induces the development of female secondary sexual characters in transinfected Cylisticus convexus adult males. However, this does not demonstrate that wVulC induces feminization in C. convexus since feminization is the conversion of genetic males into functional females that occurs during development. Nevertheless, it suggests that C. convexus may represent a feminization model suitable for further development. Knowledge about C. convexus sexual differentiation is also essential for comparative analyses, as feminization is thought to take place just before or during sexual differentiation. Consequently, we first described gonad morphological differentiation of C. convexus and compared it with that of A. vulgare. Then, wVulC was injected into male and female C. convexus adult individuals. The feminizing effect was demonstrated by the combined appearance of female secondary sexual characters in transinfected adult males, as well as the presence of intersexes and female biases in progenies in which wVulC was vertically transmitted from transinfected mothers. The establishment of a new model of feminization of a Wolbachia strain in a heterologous host constitutes a useful tool towards the understanding of the molecular mechanism of feminization.  相似文献   

15.
Several ecological conditions and processes occurring naturally in plant populations may lead to spatial aggregation of sexes within populations of sexually polymorphic species. In addition, ecological disturbances such as forest management or fire could also affect the spatial distribution of sexes within populations. Spatial aggregation of sexes can have important consequences for the fitness of the individuals in sex-biased patches through increased pollen limitation and/or variation in the male fitness of hermaphrodites. Therefore, spatial aggregation of sexes could be relevant for the maintenance of the sexual polymorphism in plant species. Here, we used point pattern analysis to study the spatial distribution of female and hermaphrodite individuals within a single population of the gynodioecious understory shrub Daphne laureola, inhabiting a young pine reforestation and the adjacent natural undisturbed area. In the undisturbed area, we found that hermaphrodites were distributed randomly whereas females were spatially aggregated at short distances. Such aggregation could result from narrower ecological amplitude, cyto-nuclear determination of sex and limited dispersal and/or increased cloning in females. In the reforested area, females were slightly more abundant and the two sexes were randomly distributed among all plants. Recolonization processes after certain forest disturbances could thus favour the establishment of females and alter the spatial distribution of sexes in this understory species.  相似文献   

16.
Self-fertilization (selfing) favours reproductive success when mate availability is low, but renders populations more vulnerable to environmental change by reducing genetic variability. A mixed-breeding strategy (alternating selfing and outcrossing) may allow species to balance these needs, but requires a system for regulating sexual identity. We explored the role of DNA methylation as a regulatory system for sex-ratio modulation in the mixed-mating fish Kryptolebias marmoratus. We found a significant interaction between sexual identity (male or hermaphrodite), temperature and methylation patterns when two selfing lines were exposed to different temperatures during development. We also identified several genes differentially methylated in males and hermaphrodites that represent candidates for the temperature-mediated sex regulation in K. marmoratus. We conclude that an epigenetic mechanism regulated by temperature modulates sexual identity in this selfing species, providing a potentially widespread mechanism by which environmental change may influence selfing rates. We also suggest that K. marmoratus, with naturally inbred populations, represents a good vertebrate model for epigenetic studies.  相似文献   

17.
The Japanese flounder (Paralichthys olivaceus) is a teleost fish with an XX/XY sex determination system. XX flounder can be induced to develop into phenotypic females or males, by rearing them at 18°C or 27°C, respectively, during the sex differentiation period. Therefore, the flounder provides an excellent model to study the molecular mechanisms underlying temperature-dependent sex determination. We previously showed that cortisol, the major glucocorticoid produced by the interrenal cells in teleosts, causes female-to-male sex reversal by directly suppressing mRNA expression of ovary-type aromatase (cyp19a1), a steroidogenic enzyme responsible for the conversion of androgens to estrogens in the gonads. Furthermore, an inhibitor of cortisol synthesis prevented masculinization of XX flounder at 27°C, suggesting that masculinization by high temperature is due to the suppression of cyp19a1 mRNA expression by elevated cortisol levels during gonadal sex differentiation in the flounder. In the present study, we found that exposure to high temperature during gonadal sex differentiation upregulates the mRNA expression of retinoid-degrading enzyme (cyp26b1) concomitantly with masculinization of XX gonads and delays meiotic initiation of germ cells. We also found that cortisol induces cyp26b1 mRNA expression and suppresses specific meiotic marker synaptonemal complex protein 3 (sycp3) mRNA expression in gonads during the sexual differentiation. In conclusion, these results suggest that exposure to high temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by elevating cortisol levels during gonadal sex differentiation in Japanese flounder.  相似文献   

18.
In studies 1 and 2 nine pairs of desert woodrats (Neotoma lepida lepida) were observed for copulatory behaviour when the female was in a state of naturally occurring oestrus (study 1) and following ovariectomy and oestrogen and progesterone replacement (study 2). Males and females respond in a similar way under conditions of natural and hormone-induced oestrus. Males show a consummatory pattern involving multiple mounts and ejaculations, with ejaculations occurring after single intromissions. Females show the lordosis reflex accompanied by hop-and-dart and ear-wiggling responses. In addition, both sexes show appetitive precopulatory behaviours; the male emits an audible rasping vocalization as he trails and mounts the female, following a period of intense sniffing of the female's anogenital region. The female also frequently approaches and sniffs the male. In study 3, the role of female odours in the sexual behaviour of the male was examined in eight of the nine pairs used in studies 1 and 2. This was done by applying to the anogenital region of ovariectomized females a combination of urine and vaginal secretions taken from familiar and unfamiliar, and oestrogen-primed or non-oestrogen-primed females. The results show that odours from oestrogen-primed females are not sufficient to elicit male sexual behaviour, if the female is not sexually active. In study 4 the eight males were tested for their preferences for urine and vaginal secretion odours taken from females in different reproductive states and applied to cotton swabs. These males spent more time sniffing unfamiliar oestrous odours than unfamiliar non-oestrous odours and more time sniffing oestrous odours from a familiar female over those taken from an unfamiliar female.In study 5, 12 sexually active males were tested with oestrogen-primed females before and after either olfactory bulb removal or sham-surgery. Bulbectomized animals ceased copulating with females although females showed precopulatory approaches.Taken together, these studies suggest that normal sexual behaviour in the male woodrat requires that the female both possess the attractive odours (of oestrus) and that she engage in appetitive precopulatory behaviour.  相似文献   

19.
We administered the synthetic estrogen, diethylstilbestrol (DES), or the antiestrogen, tamoxifen, to pregnant guinea pigs and observed the consequences for sexual differentiation of their female offspring. Hormones were administered during the period when treatment of fetuses with testosterone influences the development of sex-related traits (approximately Days 30 to 65 of gestation). Ovarian function, masculine and feminine sexual behavior, and the structure of a sexually dimorphic neural region in the preoptic area were assessed in adulthood in hormone-exposed animals and in oil-treated and untreated controls. Prenatal exposure to DES dipropionate (DESDP) caused masculinization and defeminization. DESDP-treated females mounted more than control females, both without hormonal stimulation and when given testosterone propionate (TP) as adults. The sexually dimorphic neural region was also masculinized in these females. In regard to defeminization, they showed delayed vaginal opening, impaired progesterone (P) production, an absence of corpora lutea, and impaired lordosis and mounting responses to estradiol benzoate (EB) and P. Prenatal treatment with tamoxifen produced a complicated pattern of results. Tamoxifen-exposed females evidenced less masculine-typical behavior, showing diminished mounting without hormonal stimulation and in response to TP. However, they also showed delayed vaginal opening, enhanced P production, and impaired mounting in response to EB and P. Their lordosis behavior and the volume of the sexually dimorphic neural region were unaffected. These results suggest that estrogens play a substantial role in sexual differentiation in the guinea pig. High levels of estrogen promote masculine-typical development, and unusually low levels may impair some aspects of both masculine-typical and feminine-typical development.  相似文献   

20.
Intralocus sexual conflict occurs when opposing selection pressures operate on loci expressed in both sexes, constraining the evolution of sexual dimorphism and displacing one or both sexes from their optimum. We eliminated intralocus conflict in Drosophila melanogaster by limiting transmission of all major chromosomes to males, thereby allowing them to win the intersexual tug‐of‐war. Here, we show that this male‐limited (ML) evolution treatment led to the evolution (in both sexes) of masculinized wing morphology, body size, growth rate, wing loading, and allometry. In addition to more male‐like size and shape, ML evolution resulted in an increase in developmental stability for males. However, females expressing ML chromosomes were less developmentally stable, suggesting that being ontogenetically more male‐like was disruptive to development. We suggest that sexual selection over size and shape of the imago may therefore explain the persistence of substantial genetic variation in these characters and the ontogenetic processes underlying them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号