首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As one of the world's most prevalent enteric pathogens, Campylobacter jejuni is a major causative agent of human enterocolitis and is responsible for more than 400 million cases of diarrhea each year. The impact of this pathogen on children is of particular significance. Campylobacter has developed resistance to many antimicrobial agents via multidrug efflux machinery. The CmeABC tripartite multidrug efflux pump, belonging to the resistance‐nodulation‐cell division (RND) superfamily, plays a major role in drug resistant phenotypes of C. jejuni. This efflux complex spans the entire cell envelop of C. jejuni and mediates resistance to various antibiotics and toxic compounds. We here report the crystal structure of C. jejuni CmeC, the outer membrane component of the CmeABC tripartite multidrug efflux system. The structure reveals a possible mechanism for substrate export.  相似文献   

2.
Arsenic, a toxic metalloid, exists in the natural environment and its organic form is approved for use as a feed additive for animal production. As a major foodborne pathogen of animal origin, Campylobacter is exposed to arsenic selection pressure in the food animal production environments. Previous studies showed that Campylobacter isolates from poultry were highly resistant to arsenic compounds and a 4-gene operon (containing arsP, arsR, arsC, and acr3) was associated with arsenic resistance in Campylobacter. However, this 4-gene operon is only present in some Campylobacter isolates and other arsenic resistance mechanisms in C. jejuni have not been characterized. In this study, we determined the role of several putative arsenic resistance genes including arsB, arsC2, and arsR3 in arsenic resistance in C. jejuni and found that arsB, but not the other two genes, contributes to the resistance to arsenite and arsenate. Inactivation of arsB in C. jejuni resulted in 8- and 4-fold reduction in the MICs of arsenite and arsenate, respectively, and complementation of the arsB mutant restored the MIC of arsenite. Additionally, overexpression of arsB in C. jejuni 11168 resulted in a 16-fold increase in the MIC of arsenite. PCR analysis of C. jejuni isolates from different animals hosts indicated that arsB and acr3 (the 4-gene operon) are widely distributed in various C. jejuni strains, suggesting that Campylobacter requires at least one of the two genes for adaptation to arsenic-containing environments. These results identify ArsB as an alternative mechanism for arsenic resistance in C. jejuni and provide new insights into the adaptive mechanisms of Campylobacter in animal food production environments.  相似文献   

3.
We used various genotyping methods to identify bacterial genetic markers for development of arthritic symptoms following Campylobacter enteritis. We genotyped a collection of population derived Campylobacter strains, with detailed information on clinical characteristics, including arthritic symptoms. Besides using whole genome screening methods, we focused on the lipo-oligosaccharide (LOS) gene locus in which marker genes for developing post-Campylobacter neurological disease are present. Patients with arthritic symptoms were more frequently infected with Campylobacter jejuni strains with a class A LOS locus. We also found that patients who were infected with a C. jejuni strain containing sialic acid-positive LOS (class A, B or C) more frequently had bloody diarrhoea and a longer duration of symptoms. Furthermore, the IgM antibody response against Campylobacter was stronger in patients with a sialic acid containing LOS. Ganglioside auto-antibodies were observed in a small number of patients following infection with a class C strain. We conclude that sialylation of C. jejuni LOS is not only a risk factor for development of post-infectious symptoms, but is also associated with increased severity of enteric disease.  相似文献   

4.

Background  

Prophages integrated within the chromosomes of Campylobacter jejuni isolates have been demonstrated very recently. Prior work with Campylobacter temperate bacteriophages, as well as evidence from prophages in other enteric bacteria, suggests these prophages might have a role in the biology and virulence of the organism. However, very little is known about the genetic variability of Campylobacter prophages which, if present, could lead to differential phenotypes in isolates carrying the phages versus those that do not. As a first step in the characterization of C. jejuni prophages, we investigated the distribution of prophage DNA within a C. jejuni population assessed the DNA and protein sequence variability within a subset of the putative prophages found.  相似文献   

5.
Campylobacter species are important enteric pathogens causing disease in humans and animals. There is a lack of a good immunological test that can be used routinely to separate Campylobacter jejuni from other Campylobacter species. We produced monoclonal antibodies (MAbs) directed against the major outer membrane protein (MOMP) of C. jejuni using recombinant MOMP as the antigen. One MAb, designated MAb5C4 and of the immunoglobulin G1 isotype, was found to be potentially specific for C. jejuni. Dot blots demonstrated that MAb5C4 reacted with all 29 isolates of C. jejuni tested but did not react with 2 C. jejuni isolates, 26 other Campylobacter spp. isolates, and 19 non-Campylobacter isolates. Western blotting showed that MAb5C4 bound to a single protein band approximately 43 kDa in size, corresponding to the expected size of C. jejuni MOMP. The detection limit of MAb5C4 in a dot blot assay was determined to be about 5 × 103 bacteria. The epitope on the MOMP was mapped to a region six amino acids in length with the sequence 216GGQFNP221, which is 97% conserved among C. jejuni strains but divergent in other Campylobacter spp.; a GenBank search indicated that 95% of C. jejuni isolates will be able to be detected from non-Campylobacter spp. based on the highly specific and conserved region of the GGQFNP polypeptide. The epitope is predicted to be located in a region that is exposed to the periplasm. MAb5C4 is a potentially specific and sensitive MAb that can be used for the specific detection and identification of C. jejuni.  相似文献   

6.
【背景】弯曲菌(Campylobacter)是重要的人畜共患病原菌,可在多种动物肠道定殖,但不同宿主源弯曲菌对肠上皮细胞的黏附侵袭特征及在鸡肠道内的定殖能力并不明确。【目的】探究不同宿主源弯曲菌对不同宿主肠上皮细胞黏附侵袭及在鸡肠道内定殖能力的差异性。【方法】利用 5株来自不同宿主源弯曲菌,包括人源、鸡源、鸭源和牛源空肠弯曲菌(Campylobacter jejuni)及猪源结肠弯曲菌(Campylobacter coli),在对菌株PCR鉴定、运动力及生物膜形成能力测定的基础上,分别测定各菌株对人源肠上皮细胞Caco-2、猪源肠上皮细胞IPEC-J2和大鼠源肠上皮细胞IEC-6的黏附能力,通过庆大霉素保护试验测定菌株对肠上皮细胞的侵袭能力,比较黏附量和侵袭量的差异;将5株弯曲菌分别口服攻毒鸡,于攻毒后不同日龄(different days post inoculation,DPI)采集肠道样品测定弯曲菌的菌落数,比较不同弯曲菌在鸡肠道内定殖的差异。【结果】人源弯曲菌运动力显著高于其他4株动物源弯曲菌,而牛源和猪源弯曲菌生物膜形成能力显著高于其他菌株。黏附侵袭测定结果显示,人源弯曲菌对Caco-2细胞的黏附能力显著高于动物源弯曲菌,但侵袭能力显著低于动物源弯曲菌;鸭源和牛源弯曲菌对IPEC-J2细胞的黏附能力显著低于其他菌株,而且鸭源弯曲菌的侵袭能力显著低于其他菌株;不同菌株对IEC-6细胞的黏附能力无显著差异,但鸡源弯曲菌侵袭能力显著低于其他菌株。不同弯曲菌口服攻毒鸡后1、3和6d动物源弯曲菌定殖水平显著高于人源,在攻毒后10d和15d仅牛源弯曲菌显著高于人源,于攻毒后15d所有菌株达到约8-10Log10(CFU/g)的稳定定殖水平。【结论】来源于不同宿主的弯曲菌对不同宿主肠上皮细胞均具有黏附侵袭能力,同时可在鸡肠道内稳定定殖,提示弯曲菌在不同动物间传播和适应性定殖的特征,对开展弯曲菌针对性防控措施具有一定的借鉴意义。  相似文献   

7.
Zoonotic pathogens often infect several animal species, and gene flow among populations infecting different host species may affect the biological traits of the pathogen including host specificity, transmissibility and virulence. The bacterium Campylobacter jejuni is a widespread zoonotic multihost pathogen, which frequently causes gastroenteritis in humans. Poultry products are important transmission vehicles to humans, but the bacterium is common in other domestic and wild animals, particularly birds, which are a potential infection source. Population genetic studies of C. jejuni have mainly investigated isolates from humans and domestic animals, so to assess C. jejuni population structure more broadly and investigate host adaptation, 928 wild bird isolates from Europe and Australia were genotyped by multilocus sequencing and compared to the genotypes recovered from 1366 domestic animal and human isolates. Campylobacter jejuni populations from different wild bird species were distinct from each other and from those from domestic animals and humans, and the host species of wild bird was the major determinant of C. jejuni genotype, while geographic origin was of little importance. By comparison, C. jejuni differentiation was restricted between more phylogenetically diverse farm animals, indicating that domesticated animals may represent a novel niche for C. jejuni and thereby driving the evolution of those bacteria as they exploit this niche. Human disease is dominated by isolates from this novel domesticated animal niche.  相似文献   

8.
Campylobacter jejuni is one of the most frequent causes of bacterial gastrointestinal food-borne infection worldwide. This species is part of the normal flora of the gastrointestinal tracts of animals used for food production, including poultry, which is regarded as the primary source of human Campylobacter infections. The survival and persistence of C. jejuni in food processing environments, especially in poultry processing plants, represent significant risk factors that contribute to the spread of this pathogen through the food chain. Compared to other food-borne pathogens, C. jejuni is more fastidious in its growth requirements and is very susceptible to various environmental stressors. Biofilm formation is suggested to play a significant role in the survival of C. jejuni in the food production and processing environment. The aims of this minireview were (i) to examine the evidence that C. jejuni forms biofilms and (ii) to establish the extent to which reported and largely laboratory-based studies of C. jejuni biofilms provide evidence for biofilm formation by this pathogen in food processing environments. Overall existing studies do not provide strong evidence for biofilm formation (as usually defined) by most C. jejuni strains in food-related environments under the combined conditions of atmosphere, temperature, and shear that they are likely to encounter. Simple attachment to and survival on surfaces and in existing biofilms of other species are far more likely to contribute to C. jejuni survival in food-related environments based on our current understanding of this species.  相似文献   

9.
Homologous recombination between bacterial strains is theoretically capable of preventing the separation of daughter clusters, and producing cohesive clouds of genotypes in sequence space. However, numerous barriers to recombination are known. Barriers may be essential such as adaptive incompatibility, or ecological, which is associated with the opportunities for recombination in the natural habitat. Campylobacter jejuni is a gut colonizer of numerous animal species and a major human enteric pathogen. We demonstrate that the two major generalist lineages of C. jejuni do not show evidence of recombination with each other in nature, despite having a high degree of host niche overlap and recombining extensively with specialist lineages. However, transformation experiments show that the generalist lineages readily recombine with one another in vitro. This suggests ecological rather than essential barriers to recombination, caused by a cryptic niche structure within the hosts.  相似文献   

10.
Campylobacter jejuni is one of the most intriguing human foodborne bacterial pathogen. Its survival throughout the food processing chain and its pathogenesis mechanisms in humans remain enigmatic. Living in the animal guts and particularly in avian intestine as a commensal bacterium, this microorganism is frequently isolated from meat products. Ultra high pressure (HP) is a promising alternative to thermal technology for microbial safety of foodstuffs with less organoleptic and nutritional alterations. Its application could be extended to meat products potentially contaminated by C. jejuni. To evaluate the response of Campylobacter to this technological stress and subsequent recovery at a molecular level, a dynamic 2-DE-based proteomic approach has been implemented. After cultivation, C. jejuni cells were conditioned in a high-pressure chamber and transferred to fresh medium for recovery. The protein abundance dynamics at the proteome scale were analyzed by 2-DE during the cellular process of cell injury and recovery. Monitoring protein abundance through time unraveled the basic metabolisms involved in this cellular process. The significance of the proteome evolution modulated by HP and subsequent recovery is discussed in the context of a specific cellular response to stress and recovery of C. jejuni with 69 spots showing significant changes through time.  相似文献   

11.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

12.
Ferric enterobactin (FeEnt) acquisition is a highly efficient and conserved iron scavenging system in Gram‐negative bacteria. Recently, we have characterized two FeEnt receptors (CfrA and CfrB) in Campylobacter jejuni and C. coli, the enteric human pathogens that do not produce any siderophores. In this study, whole‐genome sequencing and comparative genomic analysis identified a unique Ent trilactone esterase Cee (Cj1376) in C. jejuni. Genomic analysis and biochemical assay strongly suggested that Cee is the sole trilactone esterase in C. jejuni. Thin‐layer chromatography and HPLC analyses showed high efficiency of the purified Cee to hydrolyse Ent. Three Cee homologues previously characterized from other bacteria (IroE, IroD and Fes) were also purified and analysed together with Cee, indicating that Cee, Fes and IroD displayed similar hydrolysis dynamics for both apo and ferric forms of Ent while IroE catalysed Ent inefficiently. Unlike cytoplasmic Fes and IroD, Cee is localized in the periplasm as demonstrated by immunoblotting using Cee‐specific antibodies. Genetic manipulation of diverse Campylobacter strains demonstrated that Cee is not only essential for CfrB‐dependent FeEnt acquisition but also involved in CfrA‐dependent pathway. Together, this study identified and characterized a novel periplasmic trilactone esterase and suggested a new model of FeEnt acquisition in Campylobacter.  相似文献   

13.
The enteric flora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis) has not been well described, despite its potential importance in the understanding of both the normal condition of the intestinal physiology of these animals and the altered colonization within disease states in these birds. Nineteen whooping cranes and 23 sandhill cranes housed currently at the Calgary Zoo or its affiliated Devonian Wildlife Conservation Centre (DWCC) in Calgary, Alberta were sampled from October 2004–February 2005 by collecting aerobic and anaerobic cloacal swabs from each bird. There were seven major groupings of bacteria isolated from both species of crane. Gram‐positive cocci, coliforms, and gram‐negative bacilli were the most prevalent types of bacteria isolated for both crane species, with Escherichia coli, Enterococcus faecalis, and Streptococcus Group D, not Enterococcus the bacterial species isolated most commonly. There was a significant difference in the average number of isolates per individual between the two crane species but no differences between age or gender categories within crane species. Campylobacter sp. were isolated from five whooping cranes. The potential zoonotic pathogen Campylobacter jejuni was isolated from one whooping crane and C. upsaliensis was isolated from a second. Three other isolates were unspeciated members of the Campylobacter genus and likely belong to a species undescribed previously. The evaluation of the enteric cloacal flora of whooping cranes and sandhill cranes illustrates that differences exist between these two closely related crane species, and highlights the potential implications these differences may have for current practices involving captive wildlife. Zoo Biol 0:1–13, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

14.
The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen‐induced gene expression in the intestinal tracts of adult house flies 4–24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni‐infected and ‐uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect–pathogen interactions.  相似文献   

15.
空肠弯曲菌(Campylobacter jejuni)是世界范围流行的食源性人兽共患病原菌,是革兰氏阴性微需氧菌。其对氧气、温度、pH和胆汁酸盐等环境条件极其敏感,在环境传播和宿主定殖过程中会遭受许多不利条件,包括致命的活性氧自由基(reactive oxygen species,ROS),因此,抵抗活性氧自由基是空肠弯曲菌进化的一种重要策略。空肠弯曲菌为抵抗氧应激进化出了多种响应机制,其中,鞭毛及其介导的运动力也参与氧应激。本文对国内外有关空肠弯曲菌氧应激研究进展及鞭毛介导的氧应激机制进行综合阐述,以期为进一步完善空肠弯曲菌氧应激调控系统奠定基础,并为弯曲菌源头防控提供思路。  相似文献   

16.
Poultry are considered the major reservoir for Campylobacter jejuni, a leading bacterial cause of human food-borne diarrhea. To understand the ecology of C. jejuni and develop strategies to control C. jejuni infection in the animal reservoir, we initiated studies to examine the potential role of anti-Campylobacter maternal antibodies in protecting young broiler chickens from infection by C. jejuni. Using an enzyme-linked immunosorbent assay (ELISA), the prevalence of anti-C. jejuni antibodies in breeder chickens, egg yolks, and broilers from multiple flocks of different farms were examined. High levels of antibodies to the organism were detected in serum samples of breeder chickens and in egg yolk contents. To determine the dynamics of anti-Campylobacter maternal antibody transferred from yolks to hatchlings, serum samples collected from five broiler flocks at weekly intervals from 1 to 28 or 42 days of age were also examined by ELISA. Sera from the 1-day and 7-day-old chicks showed high titers of antibodies to C. jejuni. Thereafter, antibody titers decreased substantially and were not detected during the third and fourth weeks of age. The disappearance of anti-Campylobacter maternal antibodies during 3 to 4 weeks of age coincides with the appearance of C. jejuni infections observed in many broiler chicken flocks. As shown by immunoblotting, the maternally derived antibodies recognized multiple membrane proteins of C. jejuni ranging from 19 to 107 kDa. Moreover, in vitro serum bactericidal assays showed that anti-Campylobacter maternal antibodies were active in antibody-dependent complement-mediated killing of C. jejuni. Together, these results highlight the widespread presence of functional anti-Campylobacter antibodies in the poultry production system and provide a strong rationale for further investigation of the potential role of anti-C. jejuni maternal antibodies in protecting young chickens from infection by C. jejuni.  相似文献   

17.
Bacterial populations can display high levels of genetic structuring but the forces that influence this are incompletely understood. Here, by combining modelling approaches with multilocus sequence data for the zoonotic pathogen Campylobacter, we investigated how ecological factors such as niche (host) separation relate to population structure. We analysed seven housekeeping genes from published C. jejuni and C. coli isolate collections from a range of food and wild animal sources as well as abiotic environments. By reconstructing genetic structure and the patterns of ancestry, we quantified C. jejuni host association, inferred ancestral populations, investigated genetic admixture in different hosts and determined the host origin of recombinant C. jejuni alleles found in hybrid C. coli lineages. Phylogenetically distinct C. jejuni lineages were associated with phylogenetically distinct wild birds. However, in the farm environment, phylogenetically distant host animals shared several C. jejuni lineages that could not be segregated according to host origin using these analyses. Furthermore, of the introgressed C. jejuni alleles found in C. coli lineages, 73% were attributed to genotypes associated with food animals. Our results are consistent with an evolutionary scenario where distinct Campylobacter lineages are associated with different host species but the ecological factors that maintain this are different in domestic animals such that phylogenetically distant animals can harbour closely related strains.  相似文献   

18.
Aims: Quantitative PCR and a culture method were used to investigate Campylobacter occurrence over 3 years in a watershed located in southern Ontario, Canada that is used as a source of drinking water. Methods and Results: Direct DNA extraction from river water followed by quantitative PCR analysis detected thermophilic campylobacters at low concentrations (<130 cells 100 ml?1) in 57–79% of samples taken from five locations. By comparison, a culture‐based method detected Campylobacter in 0–23% of samples. Water quality parameters such as total Escherichia coli were not highly correlated with Campylobacter levels, although higher pathogen concentrations were observed at colder water temperatures (<10°C). Strains isolated from river water were primarily nalidixic acid‐susceptible Campylobacter lari, and selected isolates were identified as Campylobacter lari ssp. concheus. Campylobacter from wild birds (seagulls, ducks and geese) were detected at a similar rate using PCR (32%) and culture‐based (29%) methods, and although Campylobacter jejuni was isolated most frequently, C. lari ssp. concheus was also detected. Conclusions: Campylobacter were frequently detected at low concentrations in the watershed. Higher prevalence rates using quantitative PCR was likely because of the formation of viable but nonculturable cells and low recovery of the culture method. In addition to animal and human waste, waterfowl can be an important contributor of Campylobacter in the environment. Significance and Impact of the Study: Results of this study show that Campylobacter in surface water can be an important vector for human disease transmission and that method selection is important in determining pathogen occurrence in a water environment.  相似文献   

19.
In a survey conducted in 1999–2001, the carriage of thermotolerant Campylobacter s in cattle was investigated, and the genetic diversity of C. jejuni within one herd was examined and compared with human isolates. C. jejuni, C. coli and other thermotolerant Campylobacter spp. were isolated from intestinal contents from 26%, 3% and 2% of 804 cattle, respectively. The carriage rate was higher in calves (46%) than in adults (29%). Twenty-nine C. jejuni isolates from one herd and 31 human isolates from the study area were genotyped with amplified-fragment length polymorphism (AFLP). Eighty-three % of the bovine isolates fell into three distinct clusters with 95–100% similarity, persistent in the herd for 5–10 months. Among human isolates, 58% showed >90% similarity with bovine isolates. The results show that cattle are a significant and stable reservoir for C. jejuni in the study area. Transmission between individuals within the herd may be sufficient to maintain a steady C. jejuni population independent of environmental influx. The results of this study have provided new information on C. jejuni and C. coli transmission, and also on the carriage in cattle, genotypes stability and similarity between bovine and human isolates.  相似文献   

20.
The incidence of enteric infections in the Canadian population varies seasonally, and may be expected to be change in response to global climate changes. To better understand any potential impact of warmer temperature on enteric infections in Canada, we investigated the relationship between ambient temperature and weekly reports of confirmed cases of three pathogens in Canada: Salmonella, pathogenic Escherichia coli and Campylobacter, between 1992 and 2000 in two Canadian provinces. We used generalized linear models (GLMs) and generalized additive models (GAMs) to estimate the effect of seasonal adjustments on the estimated models. We found a strong non-linear association between ambient temperature and the occurrence of all three enteric pathogens in Alberta, Canada, and of Campylobacter in Newfoundland-Labrador. Threshold models were used to quantify the relationship of disease and temperature with thresholds chosen from 0 to −10°C depending on the pathogen modeled. For Alberta, the log relative risk of Salmonella weekly case counts increased by 1.2%, Campylobacter weekly case counts increased by 2.2%, and E. coli weekly case counts increased by 6.0% for every degree increase in weekly mean temperature. For Newfoundland-Labrador the log relative risk increased by 4.5% for Campylobacter for every degree increase in weekly mean temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号