首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate sex ratios are notorious for their lack of fit to theoretical models, both with respect to the direction and the magnitude of the sex ratio adjustment. The reasons for this are likely to be linked to simplifying assumptions regarding vertebrate life histories. More specifically, if the sex ratio adjustment itself influences offspring fitness, due to sex-specific interactions among offspring, this could affect optimal sex ratios. A review of the literature suggests that sex-specific sibling interactions in vertebrates result from three major causes: (i) sex asymmetries in competitive ability, for example due to sexual dimorphism, (ii) sex-specific cooperation or helping, and (iii) sex asymmetries in non-competitive interactions, for example steroid leakage between fetuses. Incorporating sex-specific sibling interactions into a sex ratio model shows that they will affect maternal sex ratio strategies and, under some conditions, can repress other selection pressures for sex ratio adjustment. Furthermore, sex-specific interactions could also explain patterns of within-brood sex ratio (e.g. in relation to laying order). Failure to take sex-specific sibling interactions into account could partly explain the lack of sex ratio adjustment in accordance with theoretical expectations in vertebrates, and differences among taxa in sex-specific sibling interactions generate predictions for comparative and experimental studies.  相似文献   

2.
Mothers vary in their effects on their offspring, but studies of variation in maternal effects rarely ask whether differences between mothers are consistent for sons and daughters. Here, we analysed maternal effects in the mosquitofish Gambusia holbrooki for development time and adult size of sons and daughters, and a primary male sexual character (gonopodium length). We found substantial maternal effects on all traits, most notably for gonopodium length. There were significant correlations within each sex for maternal effects on different traits, indicative of trade-offs between development rate and adult size. By contrast, there was no evidence of any consistency in maternal effects on sons and daughters. This suggests that the evolution of maternal effects will follow independent trajectories dependent on sex-specific selection on offspring. Importantly, failure to recognize the sex-specific nature of maternal effects in this population would have substantially underestimated the extent of their variation between mothers.  相似文献   

3.
Yolk androgens affect offspring hatching, begging, growth and survival in many bird species. If these effects are sex-specific, yolk androgen deposition may constitute a mechanism for differential investment in male and female offspring. We tested this hypothesis in zebra finches. In this species, females increase yolk-testosterone levels and produce male-biased sex ratios when paired to more attractive males. We therefore predicted that especially sons benefit from elevated yolk androgens. Eggs were injected with testosterone or sesame oil (controls) after 2 days of incubation. Testosterone had no clear effect on sex-specific embryonic mortality and changed the pattern of early nestling mortality independent of offspring sex. Testosterone-treated eggs took longer to hatch than control eggs. Control males begged significantly longer than females during the first days after hatching and grew significantly faster. These sex differences were reduced in offspring from testosterone-treated eggs due to prolonged begging durations of daughters, enhanced growth of daughters and reduced growth of sons. The results show that variation in maternal testosterone can play an important role in avian sex allocation due to its sex-specific effects on offspring begging and growth.  相似文献   

4.
Maternal investment in offspring immunity via egg quality may be an adaptive evolutionary strategy shaped by natural selection. We investigated how maternal investment in eggs can influence offspring immunity by conducting two experiments. First, we manipulated foraging performance of the mothers before egg laying by attaching a small weight to their back feathers. During the nestling period, we investigated offspring total antibody production at the age of 7 days and after antibody challenge, and conducted a partial cross-fostering design to separate the effects of the experiment and rearing-related variation on offspring immunity. In a separate experiment, partial cross-fostering with antibody challenging without female pied flycatcher manipulation was conducted for another set of nests. Total antibody levels at the age of 7 days were reduced in nestlings of the experimental female pied flycatchers when compared with the set of unmanipulated nests. Maternal investment in the eggs may affect some aspects of offspring immunity during the early nestling period and this investment is costly. However, antibody response to a set of novel antigens (sheep red blood cells) at the end of the nestling period was not affected by the female pied flycatchers treatment. Instead our results suggest that general antibody responsiveness is mainly determined by the rearing environment and total antibody levels before the injection.  相似文献   

5.
Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.  相似文献   

6.
Females are predicted to adjust their reproductive investmentin relation to resource quality. In zebra finches (Taeniopygiaguttata), diet quality has been found to influence egg massboth between and within clutches. We tested the prediction thatdiet quality also affects the quantity of maternally allocatedyolk testosterone and 5-dihydrotestosterone (DHT) between andwithin clutches. We also investigated whether this pattern differedbetween male and female eggs. Females laid eggs on a high-quality(HQ) or a low-quality (LQ) diet. Eggs were removed at layingand artificially incubated for 72 h, after which time embryoswere sexed and yolk androgens assayed. Diet treatments werethen swapped and the experiment repeated. Because there wasevidence of a carry-over effect between breeding rounds, webased our conclusions mainly on the results from the first breedinground. On the HQ diet, but not on the LQ diet, infertile eggscontained more testosterone than did fertile eggs in round one.Although there were no overall differences in within-clutchpatterns of androgen deposition between the diets, this changedwhen embryo sex was taken into account. On the HQ diet, testosteronedecreased with laying sequence for male eggs but increased withlaying sequence for female eggs. On the LQ diet, mothers' maleeggs contained more testosterone and DHT than did female eggsregardless of position in the laying sequence. Our data suggestthat there are complex, context-dependent mechanisms of sex-specificandrogen allocation in this species.  相似文献   

7.
Parental effects play a vital role in shaping offspring phenotype. In birds, incubation behaviour is a critical parental effect because it influences the early developmental environment and can therefore have lifelong consequences for offspring phenotype. Recent studies that manipulated incubation temperature found effects on hatchling body composition, condition and growth, suggesting that incubation temperature could also affect energetically costly physiological processes of young birds that are important to survival (e.g. immune responses). We artificially incubated wood duck (Aix sponsa) eggs at three biologically relevant temperatures. Following incubation, we used two immunoassays to measure acquired immune responses of ducklings. Ducklings incubated at the lowest temperature had reduced growth, body condition and responses to both of our immune challenges, compared with those from the higher temperatures. Our results show that incubation temperatures can be an important driver of phenotypic variation in avian populations.  相似文献   

8.
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.  相似文献   

9.
Nest-site preference and maternal effects on offspring growth   总被引:3,自引:0,他引:3  
Maternal preferences for oviposition sites are assumed to beadaptive, but offspring fitness is not always higher at preferredsites and, thus, further study of the selection pressures thatinfluence oviposition behavior is warranted. Among birds, predationis regarded as the primary agent of selection on nest-site microhabitatpreferences, but alternatives are rarely considered. We testedthe hypothesis that avian nest-site preferences are an adaptiveresponse to fitness costs imposed by variation in nest-sitemicroclimate. We documented that Chestnut-collared Longspurs(Calcarius ornatus) strongly preferred to orient nests towardsthe southeast and showed that this preference influenced microclimate:nests facing southeast had the highest midday temperatures.Yet, preferences were not adaptive because nestlings in nestswith the preferred orientation gained mass at a slower rate,had retarded skeletal growth, and reached a smaller final size.We experimentally tested this result by altering orientationof nests and confirmed, for the first time, that variation innestling growth was causally linked to variation in nest microclimatearising from nest-orientation preferences. Adults respondedto the high temperatures at preferred southeast-facing nestsby spending more time shading young from the sun, apparentlyattempting to ameliorate heat costs. This response, however,resulted in parents spending less time feeding young, potentiallyexplaining slower growth in these nests. Direct effects of highertemperatures may also play a role in slower growth. Althoughwe lack an explanation for this apparently maladaptive preference,these results demonstrate that nest-site choices of birds canyield fitness costs imposed by variation in nest microclimate.  相似文献   

10.
11.
Environmental conditions experienced in early life can influence an individual's growth and long-term health, and potentially also that of their offspring. However, such developmental effects on intergenerational outcomes have rarely been studied. Here we investigate intergenerational effects of early environment in humans using survey- and clinic-based data from rural Gambia, a population experiencing substantial seasonal stress that influences foetal growth and has long-term effects on first-generation survival. Using Fourier regression to model seasonality, we test whether (i) parental birth season has intergenerational consequences for offspring in utero growth (1982 neonates, born 1976-2009) and (ii) whether such effects have been reduced by improvements to population health in recent decades. Contrary to our predictions, we show effects of maternal birth season on offspring birth weight and head circumference only in recent maternal cohorts born after 1975. Offspring birth weight varied according to maternal birth season from 2.85 to 3.03 kg among women born during 1975-1984 and from 2.84 to 3.41 kg among those born after 1984, but the seasonality effect reversed between these cohorts. These results were not mediated by differences in maternal age or parity. Equivalent patterns were observed for offspring head circumference (statistically significant) and length (not significant), but not for ponderal index. No relationships were found between paternal birth season and offspring neonatal anthropometrics. Our results indicate that even in rural populations living under conditions of relative affluence, brief variation in environmental conditions during maternal early life may exert long-term intergenerational effects on offspring.  相似文献   

12.
1. In many noncooperative vertebrates, maternal effects commonly influence offspring survival and development. In cooperative vertebrates, where multiple adults help to raise young from a single brood, social effects may reduce or replace maternal effects on offspring. 2. Factors affecting offspring survival and development at different stages (fledging, nutritional independence and adulthood) were tested in the cooperatively breeding Arabian babbler to determine the relative importance of social, maternal and environmental factors at each stage. An influence of maternal effects was found during the nestling stage only. 3. Social factors affected the survival and development of young at all stages. The amount of food received from helpers influenced post-fledging weight gain, development of foraging skills, and survival to reproductive age. Environmental effects were also important, with groups occupying high-quality territories more likely to produce young that survived to maturity. 4. The strong influence of helper contributions on the survival and development of young at all stages from hatching to maturity suggests social factors may have important long-term effects on offspring fitness in cooperative societies. Traditional measures of offspring survival in cooperative birds, which commonly measure survival to fledging age only, may underestimate the significant benefit of helper contributions on the survival and development of young.  相似文献   

13.
The transfer of antibodies from mother to offspring provides crucial protection against infection to offspring during early life in humans and domestic and laboratory animals. However, few studies have tested the consequences of variation in maternal antibody transfer for offspring fitness in the wild. Further, separating the immunoprotective effects of antibodies from their association with nutritional resources provided by mothers is difficult. Here, we measured plasma levels of total and parasite-specific antibodies in neonatal (less than 10 days old) wild Soay sheep over 25 years to quantify variation in maternal antibody transfer and test its association with offspring survival. Maternal antibody transfer was predicted by maternal age and previous antibody responses, and was consistent within mothers across years. Neonatal total IgG antibody levels were positively related to early growth, suggesting they reflected nutritional transfer. Neonatal parasite-specific IgG levels positively predicted first-year survival, independent of lamb weight, total IgG levels and subsequent lamb parasite-specific antibody levels. This relationship was partly mediated via an indirect negative association with parasite burden. We show that among-female variation in maternal antibody transfer can have long-term effects on offspring growth, parasite burden and fitness in the wild, and is likely to impact naturally occurring host–parasite dynamics.  相似文献   

14.
Maternal and environmental effects can profoundly influence offspring phenotypes, independent of genetic effects. Within avian broods, both the asymmetric post‐hatching environment created by hatching asynchrony and the differential maternal investment through the laying sequence have important consequences for individual nestlings in terms of the allocation of resources to body structures with different contributions to fitness. The purpose of this study was to evaluate the relative importance of post‐hatching environmental and maternal effects in generating variation in offspring phenotypes. First, an observational study showed that within blue tit, Cyanistes caeruleus, broods, late‐hatched nestlings allocated resources to tarsus development, maintained mass gain and head‐bill growth and directed resources away from the development of fourth primary feathers. Second, a hatching order manipulation experiment resulted in nestlings from first‐laid eggs hatching last, thereby allowing comparison with both late and early‐hatched nestlings. Experimental nestlings had growth patterns which were closer to late‐hatched nestlings, suggesting that within‐brood growth patterns are determined by post‐hatching environmental effects. Therefore, we conclude that post‐hatching environmental effects play an important role in generating variation in offspring phenotypes.  相似文献   

15.
There is growing evidence that maternal experience influences offspring via non-genetic mechanisms. When female three-spined sticklebacks (Gasterosteus aculeatus) were exposed to the threat of predation, they produced larger eggs with higher cortisol content, which consumed more oxygen shortly after fertilization compared with a control group. As juveniles, the offspring of predator-exposed mothers exhibited tighter shoaling behaviour, an antipredator defence. We did not detect an effect of maternal exposure to predation risk on the somatic growth of fry. Altogether, we found that exposure to an ecologically relevant stressor during egg formation had several long-lasting consequences for offspring, some of which might be mediated by exposure to maternally derived cortisol. These results support the hypothesis that female sticklebacks might influence the development, growth and behaviour of their offspring via eggs to match their future environment.  相似文献   

16.
17.
Recently, there has been considerable interest in the role of the immune system in shaping life-history evolution, sexual selection strategies, and indexes of individual quality. The most frequently used assay of immune function, particularly in avian field studies, is the phytohemagglunitin (PHA) skin test. PHA is injected subcutaneously into the wing web, and the magnitude of the resultant swelling has traditionally been interpreted as an index of an individual's cell-mediated immunocompetence. The test follows one of two protocols: the traditional two-wing injection protocol, with one wing web injected with PHA and the other with phosphate-buffered saline (PBS), or the simplified one-wing protocol that omits the PBS injection. In this technical comment, we alert researchers to the importance of considering handling time when performing the PHA test. We show that zebra finches (Taeniopygia guttata) subjected to the two-wing protocol had a lower wing-web swelling than individuals injected in one wing. In males, handling time explained over 50% of the variation in an individual's skin swelling response; females were relatively unaffected by handling time. We suggest that caution should be exercised when comparing the magnitude of wing-web swelling across studies in which the alternate protocol was followed. In addition, the recording of handling time, and its inclusion in subsequent statistical analyses, may aid in the detection of subtle differences across treatments.  相似文献   

18.
Krist M  Munclinger P 《Molecular ecology》2011,20(23):5074-5091
Extra-pair copulations (EPC) are the rule rather than an exception in socially monogamous birds, but despite widespread occurrences, the benefits of female infidelity remain elusive. Most attention has been paid to the possibility that females gain genetic benefits from EPC, and fitness comparisons between maternal half-siblings are considered to be a defining test of this hypothesis. Recently, it was shown that these comparisons may be confounded by within-brood maternal effects where one such effect may be the distribution of half-siblings in the laying order. However, this possibility is difficult to study as it would be necessary to detect the egg from which each chick hatched. In this study, we used a new approach for egg-chick assignment and cross-fostered eggs on an individual basis among a set of nests of the collared flycatcher Ficedula albicollis. After hatching, chicks were ascribed to mothers and therefore to individual eggs by molecular genetic methods. Extra-pair young predominated early in the laying order. Under natural conditions, this should give them a competitive advantage over their half-siblings, mediated by hatching asynchrony. However, we experimentally synchronized hatching, and after this treatment, extra-pair young did not outperform within-pair young in any studied trait including survival up to recruitment and several indicators of reproductive success and attractiveness. We obtained only modest sample sizes for the last two traits and did not test for extra-pair success of male offspring. Thus, we cannot exclude the possibility of advantages of extra-pair young during the adult phase of life. However, our data tentatively suggest that the more likely reason for females' EPCs is the insurance against the infertility of a social mate.  相似文献   

19.
20.
Despite decades of research, whether vertebrates can and do adaptively adjust the sex ratio of their offspring is still highly debated. However, this may have resulted from the failure of empirical tests to identify large and predictable fitness returns to females from strategic adjustment. Here, we test the effect of diet quality and maternal condition on facultative sex ratio adjustment in the color polymorphic Gouldian finch (Erythrura gouldiae), a species that exhibits extreme maternal allocation in response to severe and predictable (genetically-determined) fitness costs. On high-quality diets, females produced a relatively equal sex ratio, but over-produced sons in poor dietary conditions. Despite the lack of sexual size dimorphism, nutritionally stressed foster sons were healthier, grew faster, and were more likely to survive than daughters. Although these findings are in line with predictions from sex allocation theory, the extent of adjustment is considerably lower than previously reported for this species. Females therefore have strong facultative control over sex allocation, but the extent of adjustment is likely determined by the relative magnitude of fitness gains and the ability to reliably predict sex-specific benefits from environmental (vs. genetic) variables. These findings may help explain the often inconsistent, weak, or inconclusive empirical evidence for adaptive sex ratio adjustment in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号