首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long noncoding RNAs (lncRNAs) have been implicated in numerous physiological and pathological processes, including cancer development and progression. However, the role and molecular mechanism of lncRNAs in resistance to chemotherapy of colorectal cancer (CRC) remain enigmatic. Here, we found that lncRNA small Cajal body-specific RNA 2 (SCARNA2) is expressed higher in CRC tissues than in adjacent normal tissues, and a robust expression of SCARNA2 is correlated with a bad prognosis of CRC patients after surgery. SCARNA2 overexpression significantly promoted chemoresistance in CRC cells, and downregulation of SCARNA2 obviously inhibited chemoresistance in vitro. SCARNA2 promotes chemotherapy resistance via competitively binding miR-342-3p to facilitate epidermal growth factor receptor (EGFR) and B-cell lymphoma 2 (BCL2) expression in CRC cells. Together, our results reveal a novel pathway that SCARNA2 regulates CRC chemoresistance through targeting miR-342-3p-EGFR/BCL2 pathway, providing a promising therapeutic target for CRC.  相似文献   

2.
3.
Tazarotene-induced gene 1 (TIG1) is considered to be a tumor suppressor gene that is highly expressed in normal or well-differentiated colon tissues, while downregulation of TIG1 expression occurs in poorly differentiated colorectal cancer (CRC) tissues. However, it is still unclear how TIG1 regulates the tumorigenesis of CRC. Polo-like kinases (Plks) are believed to play an important role in regulating the cell cycle. The performance of PLK2 in CRC is negatively correlated with the differentiation status of CRC tissues. Here, we found that PLK2 can induce the growth of CRC cells and that TIG1 can prevent PLK2 from promoting the proliferation of CRC cells. We also found that the expression of PLK2 in CRC cells was associated with low levels of Fbxw7 protein and increased expression of cyclin E1. When TIG1 was coexpressed with PLK2, the changes in Fbxw7/cyclin E1 levels induced by PLK2 were reversed. In contrast, silencing TIG1 promoted the proliferation of CRC, and when PLK2 was also silenced, the proliferation of CRC cells induced by TIG1 silencing was significantly inhibited. The above research results suggest that TIG1 can regulate the tumorigenesis of CRC by regulating the activity of PLK2.  相似文献   

4.
Colorectal cancer (CRC) is a form of cancer developing from either the colon or rectum. Nowadays, research supports the functionality of exosome expressing microRNAs (miRNAs) as potential biomarker for various cancers including CRC. This study was performed with the intent of investigating the roles of both bone marrow-derived mesenchymal stem cells (BMSCs) and exosomal miR-16-5p in CRC by regulating integrin α2 (ITGA2). A microarray-based analysis was conducted to screen the CRC-associated differentially expressed genes (DEGs) as well as potential regulatory miRNAs. Next, the role of miR-16-5p in terms of its progression in association with CRC was determined. Subsequently, CRC cells were exposed to exosomes secreted by BMSCs transfected with miR-16-5p, isolated and cocultured with CRC cells in an attempt to identify the role of exosomes. Effects of BMSCs-derived exosomes overexpressing miR-16-5p on biological functions of CRC cells and tumorigenicity were all subsequently detected. Effects of miR-16-5p treated with CRC cells in regard to CRC in vivo were also measured. ITGA2 was overexpressed, while miR-16-5p was poorly expressed in CRC cells and miR-16-5p targeted ITGA2. The in vitro experiments revealed that the BMSCs-derived exosomes overexpressing miR-16-5p inhibited proliferation, migration, and invasion, while simultaneously stimulating the apoptosis of the CRC cells via downregulation of ITGA2. Furthermore, the results of in vivo experiments confirmed that the BMSCs-derived exosomes overexpressing miR-16-5p repressed the tumor growth of CRC. Collectively, BMSCs-derived exosomes overexpressing miR-16-5p restricted the progression of CRC by downregulating ITGA2.  相似文献   

5.
MicroRNAs play critical roles in the development and progression of colorectal cancer (CRC). miR-154 acts as a tumor suppressor in several tumors; however, its role in CRC is poorly understood. Herein, we found that miR-154 was decreased in CRC tissues and cell lines. Ectopic expression of miR-154 remarkably suppressed cell proliferation and colony formation, migration and invasion in CRC cells. The toll-like receptor 2 (TLR2) was found to be a direct target of miR-154 in CRC cells. Inhibition of TLR2 performed similar effects with miR-154 overexpression on CRC cells, and overexpression of TLR2 could significantly reverse the tumor suppressive effects of miR-154 on CRC cells. This study suggests an essential role for miR-154 in CRC.  相似文献   

6.
7.
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.  相似文献   

8.
Colorectal cancer (CRC) is a common digestive tract malignancy, which is characterized by high mortality, morbidity, and poor prognosis. Replication factor C subunit 2 (RFC2), one RFC family member, was reported to be related to various malignancies and plays an important role in proliferation, invasion, and metastasis. Nonetheless, the RFC2 biological role within CRC is still unknown. RFC2 expression profiles in CRC tissues were collected based on The Cancer Genome Atlas database, whereas miR-744 and RFC2 expression levels were detected in human CRC tissues. miR-744 and RFC2 effects on the proliferation of CRC were assessed both in vivo and in vitro. RFC2 was recognized to be a direct miR-744 target through luciferase reporter assay. RFC2 upregulation was observed within CRC tissues, and a high RFC2 level showed a correlation with poor clinicopathological symptoms. RFC2 knockdown inhibited CRC cell proliferation through promoting cell cycle arrest at the G1 phase, which was achieved by cyclin E2 (CCNE2) downregulation in vivo and in vitro. miR-744 was identified to be the tumor suppressor microRNA, which targeted RFC2 directly for inhibiting the proliferation of CRC cells both in vivo and in vitro. miR-744 downregulation was detected within CRC tissue, and messenger RNA expression showed a negative correlation with RFC2 expression within CRC tissues. Our study demonstrates that the miR-744/RFC2/CCNE2 axis potentially provides a candidate for a treatment strategy for CRC.  相似文献   

9.
10.
11.
Colorectal cancer (CRC) is the most common gastrointestinal cancer, with a high mortality rate but limited therapeutic targets. DIRAS family GTPase 2 (DIRAS2) is a member of the Ras-related small G-protein family whose biological functions and underlying mechanism in CRC remain poorly understood. In this study, we identified the crucial roles of DIRAS2 in CRC. DIRAS2 expression was downregulated in CRC and closely correlated with poor prognosis. Functionally, DIRAS2 inhibited CRC cell proliferation and affected cell-cycle protein expression. Mechanistically, DIRAS2 blocked nuclear factor kappa light-chain enhancer of activated B-cell signaling pathways, inducing G0/G1 arrest. Moreover, DIRAS2 interacted with 26S proteasome non-ATPase regulatory subunit 2, which facilitates the degradation of DIRAS2 in a proteasome-mediated way. Together, these results demonstrate potential functions of DIRAS2 as a tumor-suppressor gene in CRC and reveal a distinct mechanism of DIRAS2 in CRC tumorigenesis, indicating its role as a potential biomarker and target for CRC therapy.  相似文献   

12.
Many studies investigated the relationship between matrix metalloproteinase 2 (MMP-2) overexpression and survival in patients with colorectal cancer (CRC), but yielded inconsistent results. To derive a more precise estimate of the prognostic significance of MMP-2 overexpression, we reviewed published studies and carried out a meta-analysis. Eligible articles were identified for the period up to March 2012 in electronic databases. To evaluate the correlation between MMP-2 overexpression and the prognosis in CRC, pooled hazard ratio (HR) and its 95?% confidence interval (95?% CI) for poorer overall and progression-free survival were appropriately derived from fixed-effects or random-effects models using standard meta-analysis techniques. Thirteen studies with a total of 1,919 CRC patients stratifying overall survival (OS) and/or progression-free survival in CRC patients by MMP-2 expression status were eligible for analysis. Ten studies investigated the OS in a total of 1,612 cases with CRC, and five studies investigated the progression-free survival in a total of 508 patients CRC. The combined HR estimate for OS and progression-free survival was 1.74 (95?% CI, 1.34?C2.26) and 1.35 (95?% CI, 1.07?C1.80), respectively. Both subgroup analyses and sensitivity analysis further identified the prognostic role of MMP-2 overexpression in patients with CRC. There was no evidence for publication bias. In conclusion, MMP-2 overexpression is associated with poorer overall and progression-free survival in patients with CRC.  相似文献   

13.
Due to the increasing incidence and mortality, the early diagnosis, specific targeted therapies, and prognosis for colorectal cancer (CRC) attract more and more attention. Wild-type p53-induced phosphatase 1 (Wip1) and karyopherin α2 (KPNA2) have been regarded as oncogenes in many cancers, including CRC. Wip1 dephosphorylates p53 to inactivate it. TP53 activator and Wip1 inhibitor downregulate KPNA2 expression. Therefore, we speculate that Wip1 may co-operate with KPNA2 to modulate CRC progression in a p53-dependent manner. Here, Wip1 and KPNA2 messenger RNA expression and protein levels are significantly increased in CRC tissues and cell lines and are positively correlated with each other. Wip1 silence increases p53 phosphorylation while decreases KPNA2 protein. Wip1 knockdown remarkably suppresses CRC cell proliferation and migration while KPNA2 overexpression exerts an opposing effect. KPNA2 overexpression could partially rescue Wip1 silence-inhibited CRC cell proliferation and migration. Finally, Wip1 interacts with KPNA2 to modulate the activation of AKT/GSK-3β signaling and metastasis-related factors. In summary, Wip1 could co-operate with KPNA2 to modulate CRC cell proliferation and migration, possibly via a p53-dependent manner, through downstream AKT/GSK-3β pathway. We provided a novel mechanism of Wip1 interacting with KPNA2, therefore modulating CRC cell proliferation and migration.  相似文献   

14.
Stress alters immunological and neuroendocrinological functions. An increasing number of studies indicate that chronic stress can accelerate tumor growth, but its role in colorectal carcinoma (CRC) progression is not well understood. The aim of this study is to investigate the effects of chronic restraint stress (CRS) on CRC cell growth in nude mice and the possible underlying mechanisms. In this study, we showed that CRS increased the levels of plasma catecholamines including epinephrine (E) and norepinephrine (NE), and stimulated the growth of CRC cell-derived tumors in vivo. Treatment with the adrenoceptor (AR) antagonists phentolamine (PHE, α-AR antagonist) and propranolol (PRO, β-AR antagonist) significantly inhibited the CRS-enhanced CRC cell growth in nude mice. In addition, the stress hormones E and NE remarkably enhanced CRC cell proliferation and viability in culture, as well as tumor growth in vivo. These effects were antagonized by the AR antagonists PHE and PRO, indicating that the stress hormone-induced CRC cell proliferation is AR dependent. We also observed that the β-AR antagonists atenolol (ATE, β1- AR antagonist) and ICI 118,551 (ICI, β2- AR antagonist) inhibited tumor cell proliferation and decreased the stress hormone-induced phosphorylation of extracellular signal-regulated kinases-1/2 (ERK1/2) in vitro and in vivo. The ERK1/2 inhibitor U0126 also blocked the function of the stress hormone, suggesting the involvement of ERK1/2 in the tumor-promoting effect of CRS. We conclude that CRS promotes CRC xenograft tumor growth in nude mice by stimulating CRC cell proliferation through the AR signaling-dependent activation of ERK1/2.  相似文献   

15.
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the western world. In this study, we evaluated the expression of matrix metalloproteinase 2 gene (MMP2) in CRC and analyzed its correlation with clinicopathological features. We found that the expression of MMP2 was significantly higher in CRC tissues than in the colorectal tissues. In addition, high levels of MMP2 protein were positively correlated with the status of tumor size, lymph node metastasis, distant metastasis, Dukes' stage, and tumor invasion. Moreover, patients with higher MMP2 levels had markedly shorter overall survivals than those with low MMP2 levels. Multivariate analysis results suggested that the level of MMP2 expression is an independent prognostic indicator for the survival of patients with CRC. Silencing MMP2 expression in CRC cell lines with lentiviral-mediated shRNA markedly suppressed cell proliferation, colony formation, and invasion. Furthermore, we observed that vascular endothelial growth factor (VEGF) and membrane type 1 (MT1)-MMP protein levels were decreased in MMP2-down-regulated colorectal cells. Therefore, our study demonstrated that MMP2 is an important factor related to carcinogenesis and metastasis of CRC, and MMP2 promotes CRC cell growth and invasion by up-regulating VEGF and MT1-MMP expression, which makes this pathway a potential target for cancer treatment.  相似文献   

16.
Despite the steadily increasing worldwide incidence of colorectal cancer (CRC), an effective noninvasive approach for early detection of CRC is still under investigation. The guaiac-based fecal occult blood test (FOBT) and fecal immunochemical test (FIT) have gained popularity as noninvasive CRC screening tests owing to their convenience and relatively low costs. However, the FOBT and FIT have limited sensitivity and specificity. To develop a noninvasive tool for the detection of CRC, we investigated the sensitivity, specificity, and accuracy of a stool DNA test targeting methylated syndecan-2 (SDC2), which is frequently methylated in patients with CRC. The present study enrolled 62 patients diagnosed as having stage 0-IV CRC and 76 healthy participants between July 2018 and June 2019 from two institutions. Approximately 4.5 g of stool sample was collected from each participant for detection of human methylated SDC2 gene. In total, 48 of 62 (77.4%) patients with CRC showed positive results, whereas 67 out of 76 (88.2%) healthy participants showed negative results. The area under the curve of the receiver operating characteristic curve constructed was 0.872 for discrimination between patients with CRC and healthy individuals. The present study highlights the potential of the fecal methylated SDC2 test as a noninvasive detection method for CRC screening with a relatively favorable sensitivity of 77.4%, a specificity of 88.2% and a positive predictive value of 84.2% compared with other available fecal tests. Further multicenter clinical trials comprising subjects of varied ethnicities are required to validate this test for the mass screening of patients with CRC.  相似文献   

17.
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Currently, an increasing evidence showed that circular RNAs (circRNAs) play important roles in tumor progression. However, the effects and underlying mechanisms of circRNAs in CRC progression remain unclear. In the present study, through circRNA high-throughput sequencing and quantitative real-time polymerase chain reaction, we identified that hsa_circ_0136666 was significantly overexpressed in CRC tissues and cell lines. High hsa_circ_0136666 expression was associated with poor overall survival of patients with CRC. In vitro function assays showed that hsa_circ_0136666 inhibition suppressed CRC cell proliferation, migration, invasion, and arrested CRC cells in the G0/G1 phase. Furthermore, we showed that hsa_circ_0136666 inhibition reduced CRC cell growth in vivo. Mechanistically, we revealed that hsa_circ_0136666 could increase SH2B1 expression via competitively binding miR-136 in CRC cells. In addition, SH2B1 overexpression could reverse the effects of hsa_circ_0136666 inhibition on CRC cell progression. In conclusion, our data suggested that hsa_circ_0136666 could promote CRC cell progression via the miR-136/SH2B1 axis, elucidating a novel approach to improve the effectiveness of CRC treatment.  相似文献   

18.
Zhang X  Xiao Z  Liu X  Du L  Wang L  Wang S  Zheng N  Zheng G  Li W  Zhang X  Dong Z  Zhuang X  Wang C 《PloS one》2012,7(2):e31868
Colorectal cancer (CRC) is the third most common malignancy in the world. The risk of death is closely correlated to the stage of CRC at the time of primary diagnosis. Therefore, there is a compelling need for the identification of blood biomarkers that can enable early detection of CRC. We used a quantitative proteomic approach with isobaric labeling (iTRAQ) to examine changes in the plasma proteome of 10 patients with CRC compared to healthy volunteers. Enzyme-Linked Immunosorbnent Assay (ELISA) and Western blot were used for further validation. In our quantitative proteomics analysis, we detected 75 human plasma proteins with more than 95% confidence using iTRAQ labeling in conjunction with microQ-TOF MS. 9 up-regulated and 4 down-regulated proteins were observed in the CRC group. The ORM2 level in plasma was confirmed to be significantly elevated in patients suffering from CRC compared with the controls. ORM2 expression in CRC tissues was significantly increased compared with that in corresponding adjacent normal mucous tissues (P<0.001). ITRAQ together with Q-TOF/MS is a sensitive and reproducible technique of quantitative proteomics. Alteration in expression of ORM2 suggests that ORM2 could be used as a potential biomarker in the diagnosis of CRC.  相似文献   

19.
CF Zhou  XB Li  H Sun  B Zhang  YS Han  Y Jiang  QL Zhuang  J Fang  GH Wu 《IUBMB life》2012,64(9):775-782
Pyruvate kinase type M2 (PKM2) has been reported to be involved in aerobic glycolysis and cell growth in various tumors. However, the expression pattern of PKM2 in colorectal cancer (CRC) and the correlation between PKM2 expression and CRC remains unclear. The aim of this study is to investigate PKM2 expression and its possible role in CRC. We found that expression of PKM2 was increased in CRC and the increased PKM2 expression was associated with later stage and lymph metastasis of the tumors. Knockdown of PKM2 suppressed the aerobic glycolysis and decreased lactate production of colon cancer RKO cells. Knockdown of PKM2 repressed proliferation and migration of the cells. Inhibition of PKM2 suppressed xenograft tumor growth of RKO cells in vivo. These results suggest that the expression of PKM2 plays a critical role in development of CRC, and it may provide a growth advantage for colon cancer cells. Thus, PKM2 might be a potential therapeutic target for CRC. ? 2012 IUBMB Life, 64(9): 775-782, 2012.  相似文献   

20.
BackgroundGlypican-1 (GPC1) is overexpressed in several tumors, and GPC1+ exosomes have shown the potential to predict early colorectal cancer (CRC). However, the mechanisms underlying the enrichment and action of GPC1+ exosomes in CRC remain unknown.MethodsThe expression of slit guidance ligand 2 (SLIT2), hypoxia-inducible factor (HIF)-1α/2α, and GPC1 in clinical CRC tissues was detected using immunohistochemistry and western blot. Exosomes were isolated from the supernatants of CRC cell cultures. The effects of SLIT2, hypoxia, heparin, and phospholipase C (PLC) on exosomal GPC1 expression and GPC1+ exosome enrichment in CRC cells were analyzed with western blot and flow cytometry. CRC cell proliferation was assessed with MTT and colony formation assays. Co-immunoprecipitation was used to detect the binding of GPC1 and SLIT2 in SW480 cells. Nude mice were subcutaneously inoculated with SW480 cells with different treatments. The Wnt signaling was detected.ResultsSLIT2 was poorly expressed and GPC1, HIF-1α, and HIF-2α were highly expressed in human CRC tissues. SLIT2 in CRC cells inhibited GPC1+ exosome enrichment and exosomal GPC1 expression. PLC and heparin increased GPC1+ exosome enrichment in CRC cells in a concentration-dependent manner. Hypoxia increased the enrichment of GPC1+ exosomes in CRC cells depending on HIF-2α expression. GPC1+ exosomes stimulated CRC cell proliferation and xenograft tumor growth through activation of Wnt signaling.ConclusionsGPC1+ exosome enrichment is related to PLC and heparin. Hypoxia increases the enrichment of GPC1+ exosomes in CRC cells by activating HIF-2α and downregulating SLIT2. GPC1+ exosomes further drive CRC progression by activating Wnt signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号