首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Long non-coding RNAs (lncRNA) have an extensive role in the progression and chemoresistance of gastric cancer (GC). Deeply study the regulatory role of lncRNAs could provide potential therapeutic targets. The aim of this study is to explore the regulatory role of HOTAIR in the progression and oxaliplatin resistance of GC. The expression of HOTAIR in GC and cell lines were detected by using qRT-PCR. Cell proliferation and apoptosis were analysed by CCK-8, EdU incorporation and flow cytometry. Luciferase reporter assay was used to identify the interaction between HOTAIR and ABCG2 (ATP-binding cassette (ABC) superfamily G member 2, ABCG2) via miR-195-5p. The regulatory functions were verified by using molecular biology experiments. HOTAIR was significantly overexpressed in GC and associated with poor prognosis. Knock-down of HOTAIR inhibited the GC cells proliferation and oxaliplatin resistance, while overexpression of HOTAIR showed opposite functions. Further studies found that HOTAIR acted as a competing endogenous RNA (ceRNA) to absorb miR-195-5p and elevated the expression of ABCG2, which leads to resistance of GC cells to oxaliplatin. Taken together, our findings demonstrated that HOTAIR regulates ABCG2 induced resistance of GC to oxaliplatin through miR-195-5p signalling and illustrate the great potential of developing new therapeutic targets for GC patients.  相似文献   

2.
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3′-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.  相似文献   

3.

Background

Lung cancer is the leading cause of cancer-related death worldwide. Previous studies revealed that miR-183-5p is frequently involved in various human cancers. However, the exact role of miR-183-5p in regulating the pathogenesis of lung cancer remains unclear.

Method

Bioinformatic analysis, luciferase reporter assay, and Western blotting was used to investigate whether miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. Furthermore, an si-miR-183-5p and PIK3CA siRNA was used to evaluate whether PIK3CA expression increased and whether cell proliferation, migration and invasion ability were promoted.

Results

miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. miR-183-5p also acted as a tumor suppressor, and contrary to most studies, its expression was downregulated in lung cancer. Functional studies revealed that overexpression of miR-183-5p reduced cell proliferation, migration, and invasion and that miR-183-5p induced cell cycle arrest and increased cell apoptosis. PIK3CA expression, cell proliferation, migration and invasion ability increased. siRNA-mediated silencing of PIK3CA in lung cancer cells decreased their proliferation and invasive capabilities, suggesting that miR-183-5p inhibited cell proliferation and invasion of lung cancer cells at least partly through downstream targeting of PIK3CA.

Conclusion

Our studies suggest that miR-183-5p may function as a tumor suppressor in lung cancer via the miR-183-5p/PIK3CA regulatory axis and identify a potentially effective therapeutic strategy for lung cancer.  相似文献   

4.
The plasmacytoma variant translocation 1 (PVT1)1 gene is a long non-coding RNA (lncRNA)2 that has been shown to be an oncogene in many cancers. Herein, the function and potential molecular mechanisms connecting PVT1 and miR-195-5p were elucidated in endometrial cancer cell lines. Quantitative real-time PCR and fluorescence in situ hybridization (FISH)3 demonstrated that PVT1 is up-regulated concomitant with miR-195-5p down-regulation in human endometrial carcinoma tissues. PVT1 knockdown inhibited cell proliferation, migration, and invasion while facilitating apoptosis of endometrial cancer cells. Moreover, restoration of miR-195-5p due to PVT1 knockdown exerted tumor-suppressive functions. We observed that PVT1 promotes malignant cell behavior by decreasing miR-195-5p expression. Binding of PVT1 and miR-195-5p was confirmed using luciferase assays. Furthermore, expression of miR-195-5p negatively correlates with PVT1 expression. At the molecular level, either PVT1 knockdown or miR-195-5p overexpression resulted in a decrease of acidic fibroblast growth factor receptor (FGFR1)4 and basic fibroblast growth factor (FGF2).5 FGFR1 and FGF2 are targets of miR-195-5p that play a critical role in endometrial carcinoma by activating PI3K/AKT and MAPK/Erk pathways. Remarkably, PVT1 knockdown combined with miR-195-5p overexpression led to tumor regression in vivo. Overall, these results depict a novel pathway mediated by PVT1 in endometrial carcinoma, which may have potential application for endometrial carcinoma therapy.  相似文献   

5.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and it has a prevalence rate of 15%–20% among all breast cancer cases in younger women. Still, the underlying molecular mechanisms of its pathogenesis are not entirely understood. In the previous study, we identified that microRNA (miR)-1250-5p is significantly down-expressed in TNBC cells. Thus, in the present study, we explore the functional anticancer role of miR‑1250‑5p in the transient mimic transfected TNBC cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to examine the effect of miR-1250-5p on cell viability of TNBC (MDA-MB-231 and MDA-MB-453) cells. The confocal microscopy, quantitative real-time polymerase chain reaction, and western blot analysis techniques were used to assess the effect of miR-1250-5p on cancer hallmarks in test cells. Induced miR‑1250-5p expression in MDA-MB-231 and MDA-MB-453 cells decreased cell viability in a time-dependent manner. Increased miR‑1250-5p expression levels significantly decreased cell cycle G1/S phase transition markers (Cyclin D1 and CDK4) at messenger RNA (mRNA) and protein levels in TNBC cells compared to scrambled sequence transfected cells. Transient transfection of TNBC cells with miR-1250-5p mimic increased apoptosis in TNBC cells by increasing the level of active caspase (Caspase 8 and Caspase 3) of the intrinsic pathway. Apoptosis-related morphological changes were also observed in the test cells. Further, the induced expression of miR-1250-5p significantly decreased epithelial-mesenchymal transition (EMT) by altering the mRNA and protein levels of E-cadherin and Vimentin. Moreover, results of confocal microscopy revealed increased reactive oxygen species generation, and decreased mitochondria membrane potential in miR-1250-5p mimic transient transfected TNBC cells. In conclusion, miR‑1250-5p acts as tumor suppressor in TNBC cells and its induction by therapeutics might be a novel strategy for the disease treatment.  相似文献   

6.
This study aimed to test the exact functions and potential mechanisms of miR-17-5p in gastric cancer. Using real-time PCR, miR-17-5p was found to be expressed more highly in gastric cancer compared with-normal tissues. Gain- and loss-of-function assays demonstrated that miR-17-5p increased the proliferation and growth of gastric cancer cells in vitro and in vivo. Through reporter gene and western blot assays, SOCS6 was shown to be a direct target of miR-17-5p, and proliferative assays confirmed that SOCS6 exerted opposing function to that of miR-17-5p in gastric cancer. In short, miR-17-5p might function as a pro-proliferative factor by repressing SOCS6 in gastric cancer.  相似文献   

7.
Apoptosis - Accumulated evidence has demonstrated that miRNAs are closely implicated in lung carcinogenesis. Herein, we explored the expression pattern of miR-30b-5p in lung cancer, and aimed to...  相似文献   

8.
9.
Colon cancer stem cells (CCSCs) stand for a critical subpopulation of colon cancer cells that possess self-renewal and multilineage differentiation potentials and drive tumorigenicity. Due to their impact on treatment tolerance, CCSCs have been a hot research topic in the past few years. We have previously reported that miR-139-5p is a vital tumor repressive noncoding RNA whose level decreases in the clinical colon cancer samples with the increase of tumor malignancy. This research discovered that miR-139-5p targets the Wnt/β-catenin/TCF7L2 downstream effector E2-2 in CCSCs. E2-2 is a pivot molecule in the negative feedback loop of miR-139-5p/Wnt/β-catenin/TCF7L2. Its small interfering RNA reverses the stemness maintenance and epithelial-mesenchymal transition of colon cancer CSCs. This study provides a theoretical foundation for the clinical diagnosis and medical treatment of recurrent or metastatic colon cancer with miR-139-5p and its target E2-2.  相似文献   

10.
11.
12.

Background

Cancer incidence and mortality have been increasing in China, making cancer the leading cause of death since 2010 and a major public health concern in the country. Cancer stem cells have been studied in relation to the treatment of different malignancies, including gastric cancer. Anticancer bioactive peptide-3 (ACBP-3) can induce the apoptosis of gastric cancer stem cells (GCSCs) and reduce their tumorigenicity. In the present study, for the first time, we used a miRNA microarray and bioinformatics analysis to identify differentially expressed miRNAs in ACBP-3-treated GCSCs and GCSC-derived tumors in a xenograft model and functionally verified the identified miRNAs. miR-338-5p was selected based on its significant upregulation by ACBP-3 both in cultured GCSCs and in tumor tissues.

Results

miR-338-5p was downregulated in GCSCs compared with normal gastric epithelial cells, and the ectopic restoration of miR-338-5p expression in GCSCs inhibited cell proliferation and induced apoptosis, which correlated with the upregulation of the pro-apoptotic Bcl-2 proteins BAK and BIM. We also found that ACBP-3-treated GCSCs could respond to lower effective doses of cisplatin (DDP) or 5-fluorouracil (5-FU), possibly because ACBP-3 induced the expression of miR-338-5p and the BAK and BIM proteins and promoted GCSC apoptosis.

Conclusions

Our data indicate that miR-338-5p is part of an important pathway for the inhibition of human gastric cancer stem cell proliferation by ACBP-3 combined with chemotherapeutics. ACBP-3 could suppress GCSC proliferation and lower the required effective dose of cisplatin or 5-fluorouracil. Therefore, this study provides not only further evidence for the remarkable anti-tumor effect of ACBP-3 but also a possible new approach for the development of GCSC-targeting therapies.
  相似文献   

13.
Breast cancer is a malignant tumor with the highest incidence in women of the world. CXCR4 and Skp2 are highly expressed in breast cancer cells and CXCR4 was positively correlated with Skp2 by interference or overexpression. The microRNA array was used to detect the differentially expressed spectrum of micro RNAs in breast cancer cells the changes of miR-7-5p after CXCR4 inhibitor (NT21MP) treatment to block the CXCR4/SDF-1 pathway was founded. MiR-7-5p has been found to be correlated with Skp2 in various tumors in the literature, and Skp2 expression can be regulated by transfection with miR-7-5p mimics or inhibitors. The expression level of miR-7-5p was upregulated or downregulated after CXCR4 interference or overexpression. Combined with the correlation between CXCR4 and miR-7-5p in the chip results, CXCR4 may regulate Skp2 through miR-7-5p. Epithelial cells have the morphological characteristics of mesenchymal cells for some reason called epithelial–mesenchymal transformation (EMT). Transfection of miR-7-5p mimics into drug-resistant cells reduced Skp2 levels, decreased the expression of Vimentin, Snail, and slug, and increased the expression of E-cadherin. CXCR4 inhibitor (NT21MP) can reverse the EMT changes caused by miR-7-5p inhibitor. Similarly, in vivo results suggesting that CXCR4 inhibitors can reverse the EMT phenotype of drug-resistant breast cancer cells through the CXCR4/miR-7-5p/Skp2 pathway. In summary, the CXCR4/miR-7-5p/Skp2 signaling pathway plays an important role in the progression of breast cancer. This study provides a theoretical basis for the treatment of breast cancer by targeting the CXCR4 pathway.  相似文献   

14.
15.

Object

This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells.

Methods

Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A’s effect on radioresistance of CRC cells.

Results

LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells.

Conclusion

LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.  相似文献   

16.
BackgroundA growing body of research suggests that long non-coding RNA (lncRNA) play an important role during the tumorigenesis and progression of cancers, including thyroid cancer (TC). Herein, we intended to uncover the role and mechanisms of LINC01311 in TC.MethodsThe relative LINC01311, miR-146b-5p, and IMPA2 expressions were quantified by subjecting TC cells and tissues to western blotting and RT-qPCR. CCK-8 and scratch-wound healing assays were carried out for the evaluation of the proliferation and migration of TC cells. The apoptosis was evaluated by flow cytometry assay and western blotting of Bax and Bcl-2 proteins. Xenograft tumor model was also used to study how LINC01311 functions during TC cell growth. Luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to ascertain miR-146b-5p's interactions with LINC01311 and IMPA2 3′UTR.ResultsThe TC cells and tissues exhibited a downregulation of LINC01311 and IMPA2 and an upregulation of miR-146b-5p. LINC01311 overexpression retarded TC cell growth in vitro as well as in vivo. The luciferase reporter and RIP assays verified that miR-146b-5p recognizes LINC01311 and IMPA2 3′UTR by base pairing. LINC01311 overexpression could counteract the oncogenic effect of miR-146b-5p in vitro. Moreover, IMPA2 upregulation could offset the tumor-promoting effect of miR-146b-5p.ConclusionLINC01311-mediated inhibition of TC cell growth was achieved by targeting the miR-146b-5p/IMPA2 axis. These findings support that targeting the LINC01311/miR-146b-5p/IMPA2 axis may be a promising approach against TC progression.  相似文献   

17.
microRNAs (miRNAs), a kind of small noncoding RNAs, are considered able to regulate expression of genes and mediate RNA silencing. miR-129-5p was shown to be a cancer-related miRNA. However, the influence of miR-129-5p in rectal adenocarcinoma (READ) development remains to be determined. Based on the TCGA data, downregulation of miR-129-5p in READ samples was observed. Manual restoration of the miR-129-5p in SW1463 and SW480 cell lines significantly inhibited invasion, migration, and proliferation of READ cell lines, while the apoptosis ability was enhanced. Meanwhile, we found E2F7 acted as a potential target of miR-129-5p and was upregulated in READ samples. E2F7 upregulation reversed the repression of miR-129-5p on READ development. Finally, in vivo experiments showed that inhibition of tumor growth in nude mice was achieved through upregulating miR-129-5p. Overall, our findings suggest increasing of miR-129-5p leads to the suppression of READ progression through regulating the expression of E2F7, which may provide novel insights into the treatment of READ.  相似文献   

18.
19.
Lung cancer is one of the deadliest cancers, in which non-small cell lung cancer (NSCLC) accounting for 85% and has a low survival rate of 5 years. Dysregulation of microRNAs (miRNAs) can participate in tumor regulation and many major diseases. In this study, we found that miR-199a-3p/5p were down-expressed in NSCLC tissue samples, cell lines, and the patient sample database. MiR-199a-3p/5p overexpression could significantly suppress cell proliferation, migration ability and promote apoptosis. Through software prediction, ras homolog enriched in brain (Rheb) was identified as a common target of miR-199a-3p and miR-199a-5p, which participated in regulating mTOR signaling pathway. The same effect of inhibiting NSCLC appeared after down-regulating the expression of Rheb. Furthermore, our findings revealed that miR-199a can significantly inhibit tumor growth and metastasis in vivo, which fully demonstrates that miR-199a plays a tumor suppressive role in NSCLC. In addition, miR-199a-3p/5p has been shown to enhance the sensitivity of gefitinib to EGFR-T790M in NSCLC. Collectively, these results prove that miR-199a-3p/5p can act as cancer suppressor genes to inhibit the mTOR signaling pathway by targeting Rheb, which in turn inhibits the regulatory process of NSCLC. Thus, to investigate the anti-cancer effect of pre-miR-199a/Rheb/mTOR axis in NSCLC, miR-199a-3p and miR-199a-5p have the potential to become an early diagnostic marker or therapeutic target for NSCLC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号