首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationships between pedigree coefficients of inbreeding and molecular metrics are generally weak, suggesting that measures of heterozygosity estimated using microsatellites may be poor surrogates of genome-wide inbreeding. We compare three endangered species of gazelles ( Gazella ) with different degrees of threat in their natural habitats, for which captive breeding programmes exist. For G. dorcas, the species with the largest founding population, the highest and most recent number of founding events, the correlation between pedigree coefficient of inbreeding and molecular metrics was higher than for outbred populations of mammals, probably because it has both higher mean f and variance. For the two species with smaller founding populations, conventional assumptions about founders, i.e. outbred and unrelated, are unrealistic. When realistic assumptions about the founders were made, clear relationships between pedigree coefficients of inbreeding and molecular metrics were revealed for G. cuvieri. This population had a small founding population, but it did experience admixture years later; thus, the relationship between inbreeding and molecular metrics in G. cuvieri is very similar to the expected values but lower than in G. dorcas . In contrast, no relationship was found for G. dama mhorr which had a much smaller founding population than had been previously assumed, which probably had high levels of inbreeding and low levels of genetic variability, and no admixture. In conclusion, the strength of the association between pedigree coefficient of inbreeding and molecular metrics among endangered species depends on the level of inbreeding and genetic variability present in the founding population, its size and its history.  相似文献   

2.
HFCs (heterozygosity–fitness correlations) measure the direct relationship between an individual's genetic diversity and fitness. The effects of parental heterozygosity and the environment on HFCs are currently under‐researched. We investigated these in a high‐density U.K. population of European badgers (Meles meles), using a multimodel capture–mark–recapture framework and 35 microsatellite loci. We detected interannual variation in first‐year, but not adult, survival probability. Adult females had higher annual survival probabilities than adult males. Cubs with more heterozygous fathers had higher first‐year survival, but only in wetter summers; there was no relationship with individual or maternal heterozygosity. Moist soil conditions enhance badger food supply (earthworms), improving survival. In dryer years, higher indiscriminate mortality rates appear to mask differential heterozygosity‐related survival effects. This paternal interaction was significant in the most supported model; however, the model‐averaged estimate had a relative importance of 0.50 and overlapped zero slightly. First‐year survival probabilities were not correlated with the inbreeding coefficient (f); however, small sample sizes limited the power to detect inbreeding depression. Correlations between individual heterozygosity and inbreeding were weak, in line with published meta‐analyses showing that HFCs tend to be weak. We found support for general rather than local heterozygosity effects on first‐year survival probability, and g2 indicated that our markers had power to detect inbreeding. We emphasize the importance of assessing how environmental stressors can influence the magnitude and direction of HFCs and of considering how parental genetic diversity can affect fitness‐related traits, which could play an important role in the evolution of mate choice.  相似文献   

3.
Changes in genetic variability in populations (stand origins), full-sib (FS) families and three generations of selfed lines of Betula pendula were observed based on 15 allozyme loci. Growth vigour, measured as stem volume, and its relationship with heterozygosity was studied to determine the effect of inbreeding. Pooled FS families showed a higher percentage of polymorphic loci (P) and allelic numbers per locus (A) than those of natural populations, but no difference in heterozygosity. There was no difference in allozyme variability between fast-and slow-growing family groups, and heterozygosity was not correlated with stem volume among FS families. Allozyme variability was significantly decreased in advancing generations of selfing, and the further the selfing generation, the lower the heterozygosity and the slower the growth. Observed heterozygosity after advancing generations of inbreeding was increasingly higher than expected, indicating overdominance effects or, alternatively, selection against deleterious homozygotes.  相似文献   

4.
Genetic improvement, without control of inbreeding, can go to loss of genetic variability, reducing the potential for genetic gains in the domestic populations. The aim of this study was to analyze the population structure and the inbreeding depression in Campolina horses. Phenotype information from 43 465 individuals was analyzed, data provided by the Campolina Breeders Association. A pedigree file containing 107 951 horses was used to connected the phenotyped individuals. The inbreeding coefficient was performed by use of the diagonal of the relationship matrix and the genealogical parameters were computed using proper softwares. The effective population size was estimated based on the rate of inbreeding and census information, and the stratification of the population was verified by the average relationship coefficient between animals born in different regions of Brazil. The effects of inbreeding on morphological traits were made by the use of inbreeding coefficient as a covariate in the model of random regression. The inbreeding coefficient increased from 1990 on, impacting effective population size and, consequently, shrinking genetic variability. The paternal inbreeding was greater than maternal, which may be attributed to the preference for inbred animals in reproduction. The average genetic relationship coefficient of animals born in different states was lower than individuals born within the same state. The increase in the inbreeding coefficient was negatively associated with all studied traits, showing the importance to avoid genetic losses in the long term. Although results do not indicate a severe narrowing of the population until the present date, the average relationship coefficient shows signs of increase, which could cause a drastic reduction in genetic variability if inbred mating is not successfully controlled in the Campolina horse population.  相似文献   

5.
Individual‐based estimates of the degree of inbreeding or parental relatedness from pedigrees provide a critical starting point for studies of inbreeding depression, but in practice wild pedigrees are difficult to obtain. Because inbreeding increases the proportion of genomewide loci that are identical by descent, inbreeding variation within populations has the potential to generate observable correlations between heterozygosity measured using molecular markers and a variety of fitness related traits. Termed heterozygosity‐fitness correlations (HFCs), these correlations have been observed in a wide variety of taxa. The difficulty of obtaining wild pedigree data, however, means that empirical investigations of how pedigree inbreeding influences HFCs are rare. Here, we assess evidence for inbreeding depression in three life‐history traits (hatching and fledging success and juvenile survival) in an isolated population of Stewart Island robins using both pedigree‐ and molecular‐derived measures of relatedness. We found results from the two measures were highly correlated and supported evidence for significant but weak inbreeding depression. However, standardized effect sizes for inbreeding depression based on the pedigree‐based kin coefficients (k) were greater and had smaller standard errors than those based on molecular genetic measures of relatedness (RI), particularly for hatching and fledging success. Nevertheless, the results presented here support the use of molecular‐based measures of relatedness in bottlenecked populations when information regarding inbreeding depression is desired but pedigree data on relatedness are unavailable.  相似文献   

6.
A study was conducted to characterise genetic diversity in the closed nucleus of Baluchi sheep using pedigree analysis. Herdbook information collected between 1979 and 2008, including pedigree records on 21,721 animals, was used to compute inbreeding and average generation intervals. Effective population size and parameters derived from probability of gene origin were computed for ewes born between 2005 and 2008 with both parents known (female reference population). The average complete generation equivalent of the female reference population was 5.47. The mean generation interval was 3.33 years in the studied period. From 1983 to 1994, the rate of increase in inbreeding was approximately 0.2% per year, but, after 1994, inbreeding did not increase as in the preceding years and had an approximately flat trend over time. The mean relationship coefficients among rams, among ewes and between rams and ewes in active animals were calculated to predict the future level of inbreeding. The effective number of founders, effective number of ancestors and founder genome equivalent of the reference population were 80, 47 and 19.5, respectively. The realised effective population size was 134 animals. The results of this study indicated that the population under study has fairly good genetic variability.  相似文献   

7.
Genetic diversity is recognized as an important population attribute for both conservation and evolutionary purposes; however, the functional relationships between the environment, genetic diversity, and fitness-related traits are poorly understood. We examined relationships between selected lake parameters and population genetic diversity measures in 46 walleye (Sander vitreus) populations across the province of Ontario, Canada, and then tested for relationships between six life history traits (in three categories: growth, reproductive investment, and mortality) that are closely related to fitness, and genetic diversity measures (heterozygosity, d2, and Wright's inbreeding coefficient). Positive relationships were observed between lake surface area, growing degree days, number of species, and hatchery supplementation versus genetic diversity. Walleye early growth rate was the only life history trait significantly correlated with population heterozygosity in both males and females. The relationship between FIS and male early growth rate was negative and significant (P < 0.01) and marginally nonsignificant for females (P = 0.06), consistent with inbreeding depression effects. Only one significant relationship was observed for d2: female early growth rate (P < 0.05). Stepwise regression models showed that surface area and heterozygosity had a significant effect on female early growth rate, while hatchery supplementation, surface area and heterozygosity had a significant effect on male early growth rate. The strong relationship between lake parameters, such as surface area, and hatchery supplementation, versus genetic diversity suggests inbreeding and outbreeding in some of the populations; however, the weak relationships between genetic diversity and life history traits indicate that inbreeding and outbreeding depression are not yet seriously impacting Ontario walleye populations.  相似文献   

8.
How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern. Heterozygosity–fitness correlations (HFCs) have been widely used to study this link in wild populations, where key parameters that affect both variability and fitness, such as inbreeding, can be difficult to measure. We used estimates of parental heterozygosity and genetic similarity (‘relatedness’) derived from 32 microsatellite markers to explore the relationship between genetic variability and fitness in a population of the critically endangered hawksbill turtle, Eretmochelys imbricata. We found no effect of maternal MLH (multilocus heterozygosity) on clutch size or egg success rate, and no single‐locus effects. However, we found effects of paternal MLH and parental relatedness on egg success rate that interacted in a way that may result in both positive and negative effects of genetic variability. Multicollinearity in these tests was within safe limits, and null simulations suggested that the effect was not an artefact of using paternal genotypes reconstructed from large samples of offspring. Our results could imply a tension between inbreeding and outbreeding depression in this system, which is biologically feasible in turtles: female‐biased natal philopatry may elevate inbreeding risk and local adaptation, and both processes may be disrupted by male‐biased dispersal. Although this conclusion should be treated with caution due to a lack of significant identity disequilibrium, our study shows the importance of considering both positive and negative effects when assessing how variation in genetic variability affects fitness in wild systems.  相似文献   

9.
Geneticists have been interested in inbreeding and inbreeding depression since the time of Darwin. Two alternative approaches that can be used to measure how inbred an individual is involve the use of pedigree records to estimate inbreeding coefficients or molecular markers to measure multilocus heterozygosity. However, the relationship between inbreeding coefficient and heterozygosity has only rarely been investigated. In this paper, a framework to predict the relationship between the two variables is presented. In addition, microsatellite genotypes at 138 loci spanning all 26 autosomes of the sheep genome were used to investigate the relationship between inbreeding coefficient and multilocus heterozygosity. Multilocus heterozygosity was only weakly correlated with inbreeding coefficient, and heterozygosity was not positively correlated between markers more often than expected by chance. Inbreeding coefficient, but not multilocus heterozygosity, detected evidence of inbreeding depression for morphological traits. The relevance of these findings to the causes of heterozygosity--fitness correlations is discussed and predictions for other wild and captive populations are presented.  相似文献   

10.
Matings between relatives lead to a decrease in offspring genetic diversity which can reduce fitness, a phenomenon known as inbreeding depression. Because alpine ungulates generally live in small structured populations and often exhibit a polygynous mating system, they are susceptible to inbreeding. Here, we used marker-based measures of pairwise genetic relatedness and inbreeding to investigate the fitness consequences of matings between relatives in a long-term study population of mountain goats ( Oreamnos americanus ) at Caw Ridge, Alberta, Canada. We first assessed whether individuals avoided mating with kin by comparing actual and random mating pairs according to their estimated genetic relatedness, which was derived from 25 unlinked polymorphic microsatellite markers and reflected pedigree relatedness. We then examined whether individual multilocus heterozygosity H , used as a measure of inbreeding, was predicted by parental relatedness and associated with yearling survival and the annual probability of giving birth to a kid in adult females. Breeding pairs identified by genetic parentage analyses of offspring that survived to 1 year of age were less genetically related than expected under random matings. Parental relatedness was negatively correlated with offspring H , and more heterozygous yearlings had higher survival to 2 years of age. The probability of giving birth was not affected by H in adult females. Because kids that survived to yearling age were mainly produced by less genetically related parents, our results suggest that some individuals experienced inbreeding depression in early life. Future research will be required to quantify the levels of gene flow between different herds, and evaluate their effects on population genetic diversity and dynamics.  相似文献   

11.
In nonpedigreed wild populations, inbreeding depression is often quantified through the use of heterozygosity-fitness correlations (HFCs), based on molecular estimates of relatedness. Although such correlations are typically interpreted as evidence of inbreeding depression, by assuming that the marker heterozygosity is a proxy for genome-wide heterozygosity, theory predicts that these relationships should be difficult to detect. Until now, the vast majority of empirical research in this area has been performed on generally outbred, nonbottlenecked populations, but differences in population genetic processes may limit extrapolation of results to threatened populations. Here, we present an analysis of HFCs, and their implications for the interpretation of inbreeding, in a free-ranging pedigreed population of a bottlenecked species: the endangered takahe (Porphyrio hochstetteri). Pedigree-based inbreeding depression has already been detected in this species. Using 23 microsatellite loci, we observed only weak evidence of the expected relationship between multilocus heterozygosity and fitness at individual life-history stages (such as survival to hatching and fledging), and parameter estimates were imprecise (had high error). Furthermore, our molecular data set could not accurately predict the inbreeding status of individuals (as 'inbred' or 'outbred', determined from pedigrees), nor could we show that the observed HFCs were the result of genome-wide identity disequilibrium. These results may be attributed to high variance in heterozygosity within inbreeding classes. This study is an empirical example from a free-ranging endangered species, suggesting that even relatively large numbers (>20) of microsatellites may give poor precision for estimating individual genome-wide heterozygosity. We argue that pedigree methods remain the most effective method of quantifying inbreeding in wild populations, particularly those that have gone through severe bottlenecks.  相似文献   

12.
Understanding the sources of variation in inbreeding depression within populations is important for understanding the evolution of selfing rates. At the population level, inbreeding depression is due to decreased heterozygosity caused by inbreeding, which decreases overdominance and increases the frequency of expression of recessive deleterious alleles. However, within individual families inbreeding has two distinct consequences: it reduces heterozygosity and it restricts the alleles present in offspring to those present in the parent. Outcrossing both increases heterozygosity and brings new alleles into a family (compared to the alleles present if the plant is self-pollinated). Both consequences of inbreeding affect offspring fitness, but the most common experimental design used to measure among-family variation in inbreeding depression cannot distinguish them. The result is that variance in inbreeding depression among families is confounded by genetic variation in the traits being measured. Also, correlations (among families) between measures of inbreeding depression or between inbreeding depression and mean trait values are confounded by genetic variation in the traits being measured. I conclude that more complex crossing designs that allow estimation of breeding values for individual families are required to accurately detect and measure among-family variation in inbreeding depression.  相似文献   

13.
This analysis examines the association between genetic heterozygosity and individual morphologic variation in a captive population of Papio hamadryas hamadryas consisting of 403 juveniles and adults. The population structure of the colony was artificially generated and maintained and is thus rigorously defined. Subpopulations delimited by age, sex, and degree of inbreeding are also explored. Heterozygosity, as enumerated from six simple Mendelian biochemical loci, is compared with the residual morphologic variation of each individual for each of 20 quantitative traits. Use of a sequential Bonferroni technique nullifies all significant correlations. Principal-components analysis reduces the morphometrics to a single or few significant axes in each population. The first axis of the total population contains 86.07% of the variation in the sample and the absolute values of the factor scores exhibit a significant positive correlation with heterozygosity at P < 0.05. Correcting for age- and sex-related variation in the total population with a linear model subsequently demonstrates that no significant correlation between heterozygosity and morphologic variation exists. No significant relationship is found in the inbred animals or subpopulations when age and sex are controlled. Previous studies have indicated that individuals proximal to the population mean for a specific polygenic trait exhibit a higher biochemical heterozygosity than individuals distant from the mean. The results presented here, which are based on more loci than many studies and a well-defined population, do not support this relationship. Substructuring of a population by age and sex can lead to spurious correlations with univariate or multivariate techniques. Comprehensive indices of genetic variation and rigorous statistical techniques should be used in future analyses. Studies that fail to recognize these design elements should be interpreted with caution.  相似文献   

14.
Abstract Considerable effort has been invested in studying the relationship between fitness and genetic variability. While evidence exists both for and against positive genetic variability-fitness correlations (GFC), the possible environment and population-dependency of GFCs has seldom been tested. We investigated GFCs in common frog (Rana temporaria) tadpoles reared under different temperatures and feeding regimes in four replicate populations. Genetic variability in eight microsatellite loci in 238 parents was used to estimate heterozygosity (H) and mean expected d2 in 158-sibships (4515 offspring). Generalized linear mixed model analyses of offspring fitness traits (survival to metamorphosis, developmental and growth rate) revealed that offspring survival probability was positively correlated with H, and that relationships were similar in all four populations tested. However, significant interaction between other genetic variability measures (d2, relatedness) and treatment conditions indicated that GFCs were detectable in some, but not in all environments. Interestingly, GFCs between survival and both heterozygosity and relatedness were most pronounced in stressful environments (i.e. limited food). Developmental and growth rates were significantly associated with d2 but less with H and relatedness. Furthermore, many of these GFCs were population-specific. These results suggest--in line with the contention that expression of inbreeding depression can be environment dependent--that GFCs can also be highly sensitive to the environmental conditions under which they are measured. The results further suggest that the observed positive correlation between H and survival probability is likely to be explainable by the 'general', rather than by the 'local' or 'direct' effect hypotheses.  相似文献   

15.
The golden mussel, Limnoperna fortunei a highly invasive species in Brazil, has generated productive, economical, and biological impacts. To evaluate genetic structure and variability of L. fortunei populations present in fish farms in the reservoirs of Canoas I (CANFF), Rosana (ROSFF), and Capivara (CAPFF) (Paranapanema River, Paraná, Brazil), eight microsatellite loci were amplified. Five of those eight loci resulted in 38 alleles. The observed heterozygosity (Ho) was lower than the expected heterozygosity (He) in all populations, with a deviation from the Hardy–Weinberg equilibrium (HWE). The average value for the inbreeding coefficient (Fis) was positive and significative for all populations. There was higher genetic variability within populations than among them. The fixation index (Fst) showed a small genetic variability among these populations. The occurrence of gene flow was identified in all populations, along with the lack of a recent bottleneck effect. The clustering analysis yielded K = 2, with genetic similarity between the three populations. The results demonstrate low genetic structure and suggest a founding population with greater genetic variability (ROSFF). Our data point to the possible dispersal of L. fortunei aided by anthropic factors in the upstream direction. It was concluded that the three populations presented a unique genetic pool for Paranapanema River, with occurrence of gene flow.  相似文献   

16.
The present study estimates genetic variability with a set of 25 microsatellite markers in a random sample of 50 animals of Tharparkar breed of Indian zebu (Bos indicus) cattle. Tharparkar is a dual-purpose breed, valued for its milk as well as draught utility, and is adapted to the inhospitable Thar desert conditions of Rajasthan typified by summer temperature hovering above 50 degrees C, sparse rainfall and vegetation, and scarcity of even drinking water. The observed number of alleles ranged from 4 (ETH3, ILSTS030, INRA5, INRA63 and MM8) to 11 (HEL9 and ILSTS034), with allelic diversity (average number of observed alleles per locus) of 6.20. Observed and expected heterozygosity ranged from 0.25 (INRA63) to 0.77 (ETH10), and from 0.51 (HEL5 and HAUT27) to 0.88 (HEL9) respectively. Wide range of genetic variability supported the utility of these microsatellite loci in measurement of genetic diversity indices in other Indian cattle breeds too. Various average genetic variability measures, namely allele diversity (6.20), observed heterozygosity (0.57), expected heterozygosity (0.67) and mean polymorphism information content (0.60) values showed substantial within-breed genetic variability in this major breed of Rajasthan, despite accumulated inbreeding as reflected by high average inbreeding coefficient (F(IS) = 0.39). The Tharparkar population has not experienced a bottleneck in the recent past.  相似文献   

17.
Three mainland and two island roe deer ( Capreolus capreolus ) populations with a total sample size of 105 individuals from Schleswig–Holstein, northern Germany, were analysed with regard to genetic variability within and differentiation among populations as revealed by eight allozyme loci known to be polymorphic in roe deer, eight microsatellite loci and 404 bp of the mitochondrial control region. Surprisingly, the allozymes were completely monomorphic, but microsatellite and control region variability were high. Hypotheses as to demographic reasons for the variability patterns found, including bottlenecks, founder effects and translocations, are put forward. There were no statistically significant differences between the island and the mainland populations in terms of genetic variability as measured by expected heterozygosity, inbreeding coefficient and allelic richness. The correlations of the various variability indices were not statistically significant after Bonferroni correction. Nevertheless, there was a clear tendency for differentiation indices to yield concordant results for microsatellite and mitochondrial markers.  相似文献   

18.
A recent study by Väli et al. (2008) highlights that microsatellites will often provide a poor prediction of the genome‐wide nucleotide diversity of wild populations, but does not fully explain why. To clarify and stress the importance of identity disequilibrium and marker variability for correlations between multilocus heterozygosity and genome‐wide genetic variability, we performed a simple simulation with different types of markers, corresponding to microsatellites and SNPs, in populations with different inbreeding history. The importance of identity disequilibrium was apparent for both markers and there was a clear impact of marker variability.  相似文献   

19.
Gallais A 《Genetics》1984,106(1):123-137
Self-fertilization and crossing were combined to produce a large number of levels of inbreeding and of degrees of kinship. The inbreeding effect increases with the complexity of the character and with its supposed relationship with fitness. A certain amount of heterozygosity appears to be necessary for the expression of variability. With crossing of unrelated noninbred plants, genetic variance is mainly additive, but with inbreeding its major part is nonadditive. High additivity in crossing, therefore, coexists with strong inbreeding depression. However, even in inbreeding the genetic coefficient of covariation among relatives appears to be strongly and linearly related to the classical coefficient of kinship. This means that deviations from the additive model with inbreeding could be partly due to an effect of inbreeding on variances through an effect on means. An attempt to analyze genetic effects from a theoretical model, based upon the identity by descent relationship at the level of means and of covariances between relatives, tends to show that allelic interactions are more important and nonallelic interactions are less important for a character closely related to fitness. For a complex character, these results lead to the conception of a genome organized in polygenic complementary blocks integrating epistasis and dominance. Some consequences for plant breeding are also discussed.  相似文献   

20.
There is compelling evidence about the manifest effects of inbreeding depression on individual fitness and populations' risk of extinction. The majority of studies addressing inbreeding depression on wild populations are generally based on indirect measures of inbreeding using neutral markers. However, the study of functional loci, such as genes of the major histocompatibility complex (MHC), is highly recommended. MHC genes constitute an essential component of the immune system of individuals, which is directly related to individual fitness and survival. In this study, we analyse heterozygosity fitness correlations of neutral and adaptive genetic variation (22 microsatellite loci and two loci of the MHC class II, respectively) with the age of recruitment and breeding success of a decimated and geographically isolated population of a long-lived territorial vulture. Our results indicate a negative correlation between neutral genetic diversity and age of recruitment, suggesting that inbreeding may be delaying reproduction. We also found a positive correlation between functional (MHC) genetic diversity and breeding success, together with a specific positive effect of the most frequent pair of cosegregating MHC alleles in the population. Globally, our findings demonstrate that genetic depauperation in small populations has a negative impact on the individual fitness, thus increasing the populations' extinction risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号