首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A modified protoplast isolation technique, applicable to a range of dihaploidSolanum tuberosum genotypes, has been developed. A combination of high calcium and high pH was used to fuse mesophyl protoplasts of dihaploidS. tuberosum (PDH40) and the diploid wild speciesS. brevidens. Large numbers of colonies were obtained after fusion and putative hybrids selected on the basis of phenotype from regenerated shoots. From these, 11 somatic hybrid plants have been identified by their isoenzyme patterns and morphologic characteristics. Four of these hybrids had the expected chromosome number of 48. The approach of mass culture after fusion followed by selection of hybrids from regenerated shoots and the application of somatic hybridization to potato breeding are discussed.  相似文献   

2.
Summary Somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum have been produced by the electrofusion of mesophyll protoplasts in a movable multi-electrode fusion chamber. Using hair structure as a selection criteria, we identified a total of 19 somatic hybrids, which represented an overall average of 15.3% of the 124 regenerated plants obtained in the two fusion experiments. Several morphological traits were intermediate to those of the parents, including trichome density and structure, height, leaf form and inflorescence. Cytological analyses revealed that the chromosome numbers of the somatic hybrids approximated the expected tetraploid level (2n=4x=48). Fifteen hybrid plants were homogeneous and had relatively stable chromosome numbers (46–48), while four other hybrids had variable chromosome numbers (35–48) and exhibited greater morphological variation. The hybridity of these 19 somatic hybrid plants was confirmed by analyses of phosphoglucomutase (Pgm) and esterase zymograms.  相似文献   

3.
Summary Somatic fusions between the cultivated potato Solanum tuberosum and the wild species S. circaeifolium subsp. circaeifolium Bitter were produced in order to incorporate desirable traits into the potato gene pool. Selection of the putative hybrids was based on a difference in callus morphology between the hybrids and their parents, with the hybrids showing typical purple-colored cells in otherwise green calli. In all, 17 individual calli regenerated to plants. Of the nine plants that could be transferred to the greenhouse, eight showed a hybrid and one a parental morphology. Restriction fragment length polymorphism (RFLP) analysis confirmed the hybrid character in the former group. Chloroplast counts in stomatal guard cells and flow cytometric determination of nuclear DNA content showed that four hybrid plants were tetraploid (4x), one was mixoploid (5x–8x), and the others were polyploid (6x; 8x). Three out of four tetraploid hybrids were found to be fully resistant to Phytophthora infestans, and all four hybrids were resistant to Globodera pallida pathotypes Pa2 and Pa3. It was further observed that the type and amount of steroidal glycoalkaloids varied among the tubers of the parents and the hybrids. Using the hybrids as female parents in crosses with S. tuberosum, viable seeds could be obtained. This demonstrates the potential of these hybrids in practical plant breeding.  相似文献   

4.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

5.
In this study three somatic hybrid lines originating from protoplast fusion between Solanum tuberosum cv. BF15 and Solanum berthaultii were subjected to a detailed molecular analysis using the I-SSR-PCR technique based on 5′-anchored microsatellite primers. The data obtained revealed a polymorphism between the different lines, suggesting that they correspond to symmetric hybrids. The analysis of chloroplast genome of these hybrids showed that they are resulting from a recombination between parental plastomes. When transferred to a greenhouse, these hybrid lines displayed an improved vigour compared to the cultivated potato BF15 parent. Indeed, an important growth rate and high tuber yield and weight were obtained for these hybrids compared to the parent. Some of these hybrids showed also an improved ion homeostasis control and they seem to display a better tolerance to salt stress compared to the potato BF15 parent.  相似文献   

6.
Resistance to potato leafroll virus (PLRV), potato virus Y (PVYo) and potato virus X (PVX) was studied in symmetric and asymmetric somatic hybrids produced by electrofusion between Solanum brevidens (2n=2×=24) and dihaploid S. tuberosum (2n=2×=24), and also in regenerants (B-hybrids) derived through protoplast culture from a single somatic hybrid (chromosome number 48). All of the somatic hybrids between 5. brevidens and the two dihaploid lines of potato cv. Pito were extremely resistant to PLRV and PVYoand moderately resistant to PVX, irrespective of their chromosome number and ploidy level (tetraploid or hexaploid). Most (56%) of the asymmetric hybrids of irradiated S. brevidens and the dihaploid line of potato cv. Pentland Crown (PDH40) had high titres of PVYosimilar to those of PDH40, whereas the rest of the hybrids had PVYotitres less than a tenth of those in PDH40. Three B-hybrids had a highly reduced chromosome number (27, 30 and 34), but were however as resistant to PLRV, PVYoand PVX as 5. brevidens. Two asymmetric hybrids and one B-hybrid were extremely resistant to PLRV but susceptible to both PVY and PVX. The results suggested that resistance to PLRV in 5. brevidens is controlled by a gene or genes different from those controlling resistance to PVY and PVX, and the gene(s) for resistance to PVY and PVX are linked in S. brevidens.  相似文献   

7.
Summary Mesophyll protoplasts of tomato (Lycopersicon esculentum) and pepino (Solanum muricatum) were fused by using an electrofusion method and cultured in modified MS medium supplemented with naphthaleneacetic acid and kinetin, in which only pepino and somatic hybrid protoplasts could divide. Somatic hybrid plants showing intermediate characteristics in morphology were regenerated from the calli exhibiting vigorous growth in contrast with those of pepino. The hybrid nature of these plants was confirmed by cytological observation and biochemical analyses of phosphoglucomutase isozymes and the fraction-1-protein. The regenerated somatic hybrids grew to flowering stage and set fruits.  相似文献   

8.
Organellar DNA of asymmetric somatic hybrids betweenSolanum tuberosum and irradiatedS. brevidens were analysed by DNA hybridization methods using the spinach chloroplast probepSBD, wheat mitochondrial genenad5 and petunia mitochondrial geneorf25. Eight of the 12 asymmetric hybrid plants hadS. tuberosum chloroplast DNA and the remaining fourS. brevidens chloroplast DNA. A novel mitochondrial hybridization pattern was present in eight out of the 17 hybrids tested. In six hybrids, novel combinations of chloroplasts and mitochondria were found, indicating that both organelle types sorted out independently.  相似文献   

9.
Nuclear-cytoplasmic interactions can influence fertility and agronomic performance of interspecific hybrids in potato as well as other species. With the aim of assessing the potential value of a novel recombinant cytoplasm derived by interspecific somatic hybridization, backcross progeny were produced by crossing a somatic hybrid between Solanum tuberosum (tbr) and the wild incongruous species S. commersonii (cmm) with various potato clones. BC1 clones were evaluated for male fertility and other agronomic traits. Male fertility clearly depended on the cross direction and the cytoplasm source. Genotypes with cytoplasms sensitive to nuclear genes derived from Solanum commersonii and inducing male sterility showed identical mtDNA composition, as based on mtDNA analyses with various PCR-based and RFLP markers. On the other hand, genotypes with cytoplasms not inducing male sterility in the presence of the cmm nuclear genes showed a different mtDNA organisation. Analysis of cpDNA confirmed similarity of cytoplasmic composition in CMS-inducing genotypes and clear differences with the others. Genotypes with recombinant cytoplasm induced by somatic hybridization generally showed similar agronomic performances in reciprocal hybrids with tbr cytoplasm, suggesting that the novel cytoplasm can be used in potato breeding.Contribution no. 24 from the Institute of Plant Genetics, Research Division of Portici  相似文献   

10.
Summary Phenotypic and flowering characteristics of hybrid plants generated by protoplast fusion between a tetraploid S. tuberosum line and diploid S. brevidens were assessed under field conditions. Hybrids were compared to both clonal parental material and protoplast-derived plants of each parent. Almost all of the hybrids were hexaploid. A wide range of variation in morphological characters was observed for hybrids and protoclones. Flowering was markedly reduced in protoclones. The majority of hybrids flowered, had viable pollen and set tubers. Tuber and pollen characteristics of hybrids produced from individual fusion calli also varied. The potential usefulness of fusion hybrids in potato improvement is discussed.  相似文献   

11.
Electrofusion was used to obtain somatic hybrids between Solanum etuberosum (2n=2x=24) and two diploid potato lines. These hybridizations were conducted to determine if haploidxwild species hybrids are better fusion partners than conventional S. tuberosumGp. Tuberosum haploids. Restriction fragment length polymerase (RFLP) analyses of the putative somatic hybrids confirmed that each parental genome was present. The somatic hybrids between S. etuberosum and a haploid S. tuberosum clone, US-W730, were stunted and had curled, purple leaves. In contrast, somatic hybrids between S. etuberosum and a haploidxwild species hybrid (US-W 730 haploidx S. berthaultii), were vigorous and generally tuberized under field conditions. These hybrids were designated as E+BT somatic hybrids. Analyses of 23 E+BT somatic hybrids revealed a statistically significant bias towards the retention of S. etuberosum chloroplasts. Stylar incompatibilities were observed when the E+BT somatic hybrids were used as pollen donors in crosses with S. tuberosum cultivars. Reciprocal crosses did not show this incompatibility. The progeny were vigorous and had improved tuber traits when compared to the maternal E+BT parent. RFLP analyses of three sexual progeny lines confirmed the presence of all 12 S. etuberosum chromosomes. In two of these lines, RFLPs that marked each of the 24 chromosome arms of S. etuberosum were present. However, RFLP markers specific for regions on chromosomes 2, 7, and 11 were missing from the third clone. Because other markers for these chromosomes were present in the progeny line, these results indicated the likelihood of pairing and recombination between S. etuberosum and S. tuberosum chromosomes.  相似文献   

12.
Summary Asymmetric somatic hybrids were obtained by fusion of Solanum tuberosum (PDH40) protoplasts with 300- or 500-Gy irradiated protoplasts of S. brevidens. These radiation doses were sufficient to prevent the growth of the S. brevidens protoplasts. Putative hybrids were selected on the basis of phenotype from regenerated shoots and identified with a S. brevidens-specific probe. From these, 31 asymmetric hybrids were confirmed by morphological characteristics, isoenzyme patterns and RFLP analysis. The morphology of the asymmetric hybrids was intermediate between that of S. tuberosum and symmetric hybrids of both species (obtained without irradiation treatment). Chromosome counts from 17 asymmetric hybrids showed that the chromosome number of the hybrids ranged from 31 to 64. The asymmetric hybrids probably had one or two genome complements (i.e. either 24 or 48 chromosomes) from S. tuberosum and 7–22 chromosomes from S. brevidens. There was no clear correlation between the radiation dose and the degree of elimination of the S. brevidens genome.  相似文献   

13.
Summary In order to produce fertile somatic hybrids, mesophyll protoplasts from eggplant were electrofused with those from one of its close related species, Solanum aethiopicum L. Aculeatum group. On the basis of differences in the cultural behavior of the parental and hybrid protoplasts, 35 somatic hybrid plants were recovered from 85 selected calli. When taken to maturity either in the greenhouse or in the field, the hybrid plants were vigorous, all rapidly overtopping parental individuals. The putative hybrids were intermediate with respect to morphological traits, and all of their organs were larger, particularly the leaves and stems. DNA analysis of the hybrids using flow cytometry in combination with cytological analysis showed that 32 were tetraploids, 1 hexaploid and 2 mixoploids. The hybrid nature of the 35 selected plants was confirmed by a comparison of the isoenzyme patterns of isocitrate dehydrogenase (Idh), 6-phosphogluconate dehydrogenase (6-Pgd) and phosphoglucomutase (Pgm). Chloroplast DNA (ctDNA) restriction analysis using Bam HI revealed that among the 27 hybrid plants analyzed, 10 had S. aethiopicum patterns and the 17 remaining hybrids exhibited bands identical with those of eggplant without any changes. All of the somatic hybrid plants flowered. Both parental plants had 94% stainable pollen, while the hybrids varied widely in pollen viability ranging from 30% to 85%. The somatic hybrids showed high significant variation in fruit production. Nevertheless, there was a tendency for low fertility to be associated often with S. aethiopicum chloroplast type and/or with an abnormal ploidy level, while good fertility was mostly associated with the tetraploid level and eggplant chloroplasts. Interestingly, 2 tetraploid somatic hybrid clones were among the most productive, yielding up to 9 kg/plant. As far as the fertility of the F1 sexual counterpart was concerned, only 2 fruits of 50 g were obtained. Hybrid fertility in relation to phylogenetic affinities of the fusion partners is discussed.  相似文献   

14.
Sharma SK  Bryan GJ  Winfield MO  Millam S 《Planta》2007,226(6):1449-1458
The stability, both genetic and phenotypic, of potato (Solanum tuberosum L.) cultivar Desiree plants derived from alternative propagation methodologies has been compared. Plants obtained through three clonal propagation routes—axillary-bud-proliferation, microtuberisation and a novel somatic embryogenesis system, and through true potato seeds (TPS) produced by selfing were evaluated at three levels: gross phenotype and minituber yield, changes in ploidy (measured by flow cytometry) and by molecular marker analysis [measured using AFLP (amplified fragment length polymorphism)]. The clonally propagated plants exhibited no phenotypic variation while the TPS-derived plants showed obvious phenotypic segregation. Significant differences were observed with respect to minituber yield while average plant height, at the time of harvesting, was not significantly different among plants propagated through four different routes. None of the plant types varied with respect to gross genome constitution as assessed by flow cytometry. However, a very low level of AFLP marker profile variation was seen amongst the somatic embryo (3 out of 451 bands) and microtuber (2 out of 451 bands) derived plants. Intriguingly, only AFLP markers generated using methylation sensitive restriction enzymes were found to show polymorphism. No polymorphism was observed in plants regenerated through axillary-bud-proliferation. The low level of molecular variation observed could be significant on a genome-wide scale, and is discussed in the context of possible methylation changes occurring during the process of somatic embryogenesis.  相似文献   

15.
Summary Restriction fragment length polymorphism (RFLP) markers were used to distinguish the chromosomes of Solanum brevidens from those of potato (S. tuberosum) in a fertile somatic hybrid. The hybrid had markers that account for all 24 chromosome arms from each parent, indicating that the hybrid contained at least one copy of each chromosome from each parent. The markers were then used to follow segregation of chromosomes in sexual progeny that resulted from a cross of the somatic hybrid with the potato cultivar Katahdin. Approximately 10% of the sexual progeny lacked one or more of the markers specific to S. brevidens. No one chromosome or marker appeared to be lost preferentially. This infrequent absence of a chromosome marker derived from the wild parent could be explained by intergenomic pairing and recombination. The loss of a marker band for chromosome 8, coupled with the retention of two flanking markers, suggested that a small region of DNA was deleted during regeneration of the somatic hybrid. These results show the value of RFLP analysis when applied to somatic hybrids and their progeny. Clearly, RFLPs will be useful for following the DNA from wild species during its introgression into potato cultivars.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

16.
Allotriploid somatic hybrids were obtained from fusions between protoplasts of diploid tomato and monohaploid potato. The selection of fusion products was carried out in two different ways: (1) The fusion of nitrate reductase-deficient tomato with potato gave rise only to hybrid calli if selection was performed on media lacking ammonium. Parental microcalli were rarely obtained and did not regenerate. (2) The fusion of cytoplasmic albino tomato with potato gave rise to albino and green hybrid calli and plants. Allotriploids were identified from the two somatic hybrid populations by counting chloroplast numbers in leaf guard cells and by flow cytometry of leaf tissue. Although some pollen fertility of allotriploids and pollen-tube growth of tomato, potato andLycopersicon pennellii into the allotriploid style were observed, no progeny could be obtained. The relevance of allotriploid somatic hybrids in facilitating limited gene transfer from potato to tomato is discussed.  相似文献   

17.
Somatic hybrids between a potato virus Y (PVY) resistant Solanum etuberosum clone and a susceptible diploid potato clone derived from a cross between S. tuberosum Gp. Tuberosum haploid US-W 730 and S. berthaultii were evaluated for resistance to PVY. All but one of the tested somatic hybrids were significantly more resistant than cultivars Atlantic and Katahdin. However, none was as resistant as the S. etuberosum parent. One hexaploid somatic hybrid, possibly the product of a triple-cell fusion involving one S. etuberosum protoplast and two haploid x S. berthaultii protoplasts, was as susceptible to PVY infection as the cultivars. Tetraploid progeny of the somatic hybrids, obtained from crosses with Gp. Tuberosum cultivars, were neither as resistant as the maternal somatic hybrid parent, nor as susceptible as the paternal cultivar parent. It appears that the introgression of PVY resistance from (1EBN) S. etuberosum into (4EBN) S. tuberosum (EBN-endosperm balance number) will be successful through the use of somatic hybridization and subsequent crosses of the somatic hybrids back to S. tuberosum.  相似文献   

18.
Somatic fusion of mesophyll protoplasts was used to produce hybrids between the frost-tolerant species Solanum commersonii (2n=2x=24) and dihaploid S. tuberosum (2n=2x=24). This is a sexually incompatible combination due to the difference in EBN (Endosperm Balance Number, Johnston et al. 1980). Species with different EBNs as a rule are sexually incompatible. Fifty-seven hybrids were analysed for variation in chromosome number, morphological traits, fertility and frost tolerance. About 70% of the hybrids were tetraploid, and 30% hexaploid. Chloroplast counts in stomatal guard cells revealed a low frequency of cytochimeras. The frequency of aneuploids was relatively higher at the hexaploid level (hypohexaploids) than at the tetraploid level (hypotetraploids). The somatic hybrids were much more vigorous than the parents, and showed an intermediate phenotype for several morphological traits and moderate to profuse flowering. Hexaploid hybrid clones were less vigorous and had a lower degree of flowering than the tetraploid hybrid clones. All of the hybrids were female fertile but male sterile except for one, which was fully fertile and self-compatible. Many seeds were produced on the latter clone by selfing and on the male-sterile clones by crossing. The somatic hybrid plants showed an introgression of genes for frost tolerance and an adaptability to cold from S. commersonii. Therefore, the use of these somatic hybrids in breeding for and in genetic esearch on frost tolerance and cold-hardening is suggested.  相似文献   

19.
Summary Intraspecific somatic hybridization between amino acid analogue-resistant cell lines of potato (Solanum tuberosum L.) has been carried out following electrofusion of protoplasts. In initial analytical electrofusion experiments (1 mm electrode separation) optimal fusion conditions were determined by changing the fusion medium (addition of Ca and/or spermine) and the electrical parameters. Subsequently, in large scale experiments, cell suspension protoplasts of aec-1, a variant resistant to AEC, were fused with the same type of protoplasts of 5mt-26 or 5mt-27, both variants resistant to 5MT and cross-resistant to 3 FT. After an extensive selection procedure only somatic hybrid lines of aec-1 + 5mt-26 were obtained. The resistance traits of aec-1 and 5mt-26 were expressed fully, indicating that the variant characters involved are transmitted dominantly. Quantitative examination of the free amino acid content revealed characteristics of both the parental cell lines in most of the somatic hybrids. However, initially selected double resistant colonies from fusions of aec-1 + 5mt-27 lines appeared not to be somatic hybrids.Abbreviations AEC S-aminoethylcysteine - 3FT 3-fluorotyrosine - 5MT 5-methyltryptophan  相似文献   

20.
For the development of an efficient transposon tagging strategy it is important to generate populations of plants containing unique independent transposon insertions that will mutate genes of interest. To develop such a transposon system in diploid potato the behavior of the autonomous maize transposable element Ac and the mobile Ds element was studied. A GBSS (Waxy) excision assay developed for Ac was used to monitor excision in somatic starch-forming tissue like tubers and pollen. Excision of Ac results in production of amylose starch that stains blue with iodine. The frequency and patterns of blue staining starch granules on tuber slices enabled the identification of transformants with different Ac activity. After excision the GBSS complementation was usually not complete, probably due to the segment of DNA flanking Ac that is left behind in the GBSS gene. Molecular and phenotypic analyses of 40 primary transformants classified into 4 phenotypic classes revealed reproducible patterns. A very high percentage (32.5%) of the primary transformants clearly showed early excision in the first transformed cell as displayed both by the analysis of the GBSS excision marker gene as well as DNA blot analyses. Genotypes useful for tagging strategies were used for crosses and the frequency of independent germinal transpositions was assessed. In crosses to Ds genotypes, excision of Ds was revealed that correlated to the activity of the Ac genotype. A line displaying Ac amplification to multiple copies conferred a high frequency of independent Ds transpositions. The genotypes described here are useful in somatic insertion mutagenesis aimed at the isolation of tagged mutations in diploid potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号