首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu W  Wang M  Wu W  Singh SK  Mussfeldt T  Iliakis G 《DNA Repair》2008,7(2):329-338
In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of these pathways is being actively investigated. We examine DSB repair in unperturbed G1 and G2 phase cells using mouse embryo fibroblast (MEF) mutants defective in D-NHEJ and/or HRR. WT and Rad54(-/-) MEFs repair DSBs with similar efficiency in G1 and G2 phase. LIG4(-/-), DNA-PKcs(-/-), and Ku70(-/-) MEFs show more pronounced repair defects in G1 than in G2. LIG4(-/-)/Rad54(-/-) MEFs repair DSBs as efficiently as LIG4(-/-) MEFs suggesting that the increased repair efficiency in G2 relies on enhanced function of B-NHEJ rather than HRR. In vivo and in vitro plasmid end joining assays confirm an enhanced function of B-NHEJ in G2. The results show a new and potentially important cell cycle regulation of B-NHEJ and generate a framework to investigate the mechanistic basis of HRR contribution to DSB repair.  相似文献   

2.
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.  相似文献   

3.
Role of JC virus agnoprotein in DNA repair   总被引:2,自引:0,他引:2  
  相似文献   

4.
Cell death linked to oxidative DNA damage has been implicated in acute pancreatitis. The severe DNA damage, which is beyond the capacity of the DNA repair proteins, triggers apoptosis. It has been hypothesized that oxidative stress may induce a decrease in the Ku70 and Ku80 levels and apoptosis in pancreatic acinar cells. In this study, it was found that oxidative stress caused by glucose oxidase (GO) acting on beta-d-glucose, glucose/glucose oxidase (G/GO), induced slight changes in cytoplasmic Ku70 and Ku80 but drastically induced a decrease in nuclear Ku70 and Ku80 both time- and concentration-dependently in AR42J cells. G/GO induced apoptosis determined by poly(ADP-ribose) polymerase cleavage, an increase in expression of p53 and Bax, and a decrease in Bcl-2 expression. G/GO-induced apoptosis was in parallel with the loss of nuclear Ku proteins in AR42J cells. Caspase-3 inhibitor prevented G/GO-induced nuclear Ku loss and cell death. G/GO did not induce apoptosis in the cells transfected with either the Ku70 or Ku80 expression gene but increased apoptosis in those transfected with the Ku dominant negative mutant. Pulse and pulse-chase results show that G/GO induced Ku70 and Ku80 syntheses, even though Ku70 and Ku80 were degraded both in cytoplasm and nucleus. G/GO-induced decrease in Ku binding to importin alpha and importin beta reflects possible modification of nuclear import of Ku proteins. The importin beta level was not changed by G/GO. These results demonstrate that nuclear decrease in Ku70 and Ku80 may result from the decrease in Ku binding to nuclear transporter importins and the degradation of Ku proteins. The nuclear loss of Ku proteins may underlie the mechanism of apoptosis in pancreatic acinar cells after oxidative stress.  相似文献   

5.
In Vivo Association of Ku with Mammalian Origins of DNA Replication   总被引:8,自引:0,他引:8       下载免费PDF全文
Ku is a heterodimeric (Ku70/86-kDa) nuclear protein with known functions in DNA repair, V(D)J recombination, and DNA replication. Here, the in vivo association of Ku with mammalian origins of DNA replication was analyzed by studying its association with ors8 and ors12, as assayed by formaldehyde cross-linking, followed by immunoprecipitation and quantitative polymerase chain reaction analysis. The association of Ku with ors8 and ors12 was also analyzed as a function of the cell cycle. This association was found to be approximately fivefold higher in cells synchronized at the G1/S border, in comparison with cells at G0, and it decreased by approximately twofold upon entry of the cells into S phase, and to near background levels in cells at G2/M phase. In addition, in vitro DNA replication experiments were performed with the use of extracts from Ku80(+/+) and Ku80(-/-) mouse embryonic fibroblasts. A decrease of approximately 70% in in vitro DNA replication was observed when the Ku80(-/-) extracts were used, compared with the Ku80(+/+) extracts. The results indicate a novel function for Ku as an origin binding-protein, which acts at the initiation step of DNA replication and dissociates after origin firing.  相似文献   

6.
Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21CDKN1A (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence.  相似文献   

7.
Jumonji C (JmjC) domain-containing proteins have been shown to regulate cellular processes by hydroxylating or demethylating histone and non-histone targets. JMJD8 is a Jumonji C domain-containing protein localized in the lumen of the endoplasmic reticulum and was recently shown to be involved in endothelial differentiation and cellular inflammation response. However, other physiological functions of JMJD8 remain to be elucidated. In this research, we found that knockdown of JMJD8 in cancer cells significantly increased cell proliferation, and attenuated ionizing irradiation or etoposide treatment-induced DNA double-strand breaks (DSBs) level through enhancing the expression of Ku70 and Ku80 which are key participants in the non-homologous end-joining repair of DSBs. We also provided evidence to show that knockdown of JMJD8 up-regulated cyclooxygenase-2 (COX-2) expression which contributed to the enhanced expression of Ku70/Ku80 as shown by the results that pre-treatment of JMJD8 knockdown cells with COX-2 selective inhibitor NS-398 inhibited the induction of Ku70/Ku80. Furthermore, we identified that the up-regulation of COX-2 in JMJD8 knockdown cells was partially due to the increased activation of AKT/NF-κB signaling, and LY294002 (an inhibitor of the PI3K/AKT signaling pathway) repressed the induction of COX-2 and Ku70/Ku80. In conclusion, our research provided data to establish the role of JMJD8 in regulating tumor cell proliferation and their sensitivity to ionizing irradiation or chemo-therapy drug, and the AKT/NF-κB/COX-2 signaling mediated expression of Ku70/Ku80 was involved. The results of this research indicated that JMJD8 is a potential target for enhancing the efficacy of tumor radio- and chemo-therapies.  相似文献   

8.
A synergistic increase in cell killing is observed when a heat-shock is administered prior to, during, or immediately after exposure to ionizing radiation (IR). This phenomenon, known as heat-radiosensitization, is believed to be mediated by inhibition of repair of radiation-induced double strand breaks (DSB) when cells are exposed to temperatures above 42 degrees C. However, the mechanism by which heat inhibits DSB repair is unclear. The bulk of radiation-induced DSBs are repaired via the non-homologous end-joining pathway (NHEJ). Several reports indicate that the Ku70 and Ku80 subunits of the mammalian DNA-dependent protein kinase (DNA-PK), a complex involved in NHEJ, appear to be susceptible to a heat-induced loss of DNA-binding activity, with Ku80 representing the heat-sensitive component. Since the heat-induced loss and subsequent recovery of Ku-DNA binding activity correlates well with heat-radiosensitization, a role for Ku80 and NHEJ in heat-radiosensitization has been proposed. However, direct evidence implicating Ku80 (and NHEJ) in heat-radiosensitization has been indeterminate. In this study, we demonstrate that equitoxic heat treatments at 42.5-45.5 degrees C induce a similar amount of aggregation of Ku80 in human U-1 melanoma cells. These data suggest that the time-temperature-dependent relationship between heat lethality and Ku80 aggregation are similar. However, the aggregation/disaggregation of Ku80 and its transient or permanent inactivation is unrelated to heat-radiosensitization. When survival curves were obtained for irradiated or irradiated and heated Ku80(-/-) mouse embryo fibroblasts (MEFs) and compared with survival curves obtained for wild-type (WT) cells, we found that heat-radiosensitization was not reduced in the Ku80(-/-) cells, but actually increased. Thus, our findings indicate that Ku80 is not essential for heat-radiosensitization. Non-involvement of Ku-dependent or Ku-independent NHEJ pathways in heat-radiosensitization was confirmed by comparing clonogenic survival between DNA ligase IV-defective and WT human cells. Our data therefore implicate homologous recombination in inhibition of repair of radiation-induced DSBs and as a target for heat-radiosensitization.  相似文献   

9.
10.
DNA double-strand break (DSB) repair in mammalian cells is dependent on the Ku DNA binding protein complex. However, the mechanism of Ku-mediated repair is not understood. We discovered a Saccharomyces cerevisiae gene (KU80) that is structurally similar to the 80-kDa mammalian Ku subunit. Ku8O associates with the product of the HDF1 gene, forming the major DNA end-binding complex of yeast cells. DNA end binding was absent in ku80delta, hdf1delta, or ku80delta hdf1delta strains. Antisera specific for epitope tags on Ku80 and Hdf1 were used in supershift and immunodepletion experiments to show that both proteins are directly involved in DNA end binding. In vivo, the efficiency of two DNA end-joining processes were reduced >10-fold in ku8Odelta, hdfldelta, or ku80delta hdf1delta strains: repair of linear plasmid DNA and repair of an HO endonuclease-induced chromosomal DSB. These DNA-joining defects correlated with DNA damage sensitivity, because ku80delta and hdf1delta strains were also sensitive to methylmethane sulfonate (MMS). Ku-dependent repair is distinct from homologous recombination, because deletion of KU80 and HDF1 increased the MMS sensitivity of rad52delta. Interestingly, rad5Odelta, also shown here to be defective in end joining, was epistatic with Ku mutations for MMS repair and end joining. Therefore, Ku and Rad50 participate in an end-joining pathway that is distinct from homologous recombinational repair. Yeast DNA end joining is functionally analogous to DSB repair and V(D)J recombination in mammalian cells.  相似文献   

11.
Yin DT  Wang Q  Chen L  Liu MY  Han C  Yan Q  Shen R  He G  Duan W  Li JJ  Wani A  Gao JX 《PloS one》2011,6(11):e27154
DNA damage response (DDR) is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV) irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/-) MEFs) were defective in cyclobutane pyrimidine dimers (CPD) repair after UV treatment. As a result, the UV-treated mili(-/-) MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose) polymerase (PARP) and Bik. The impaired DNA repair in the mili(-/-) MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG]) and double strand break (DSB) repair were also defective in the mili(-/-) MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR), respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.  相似文献   

12.
Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.  相似文献   

13.
Lu C  Zhu F  Cho YY  Tang F  Zykova T  Ma WY  Bode AM  Dong Z 《Molecular cell》2006,23(1):121-132
Immunofluorescence studies have revealed that H2AX is phosphorylated at the sites of DNA double-strand breaks induced by ionizing radiation and is required for recruitment of repair factors into nuclear foci after DNA damage. Therefore, the function of H2AX is believed to be associated primarily with repair of DNA damage. Here, we report a function of H2AX in cellular apoptosis. Our data showed that H2AX is phosphorylated by UVA-activated JNK. We also provided evidence showing that UVA induces caspase-3 and caspase-activated DNase (CAD) activity in both H2AX wild-type and H2AX knockout mouse embryonic fibroblasts (MEFs). However, DNA fragmentation occurred only in H2AX wild-type MEFs. Furthermore, H2AX phosphorylation was critical for DNA degradation triggered by CAD in vitro. Taken together, these data indicated that H2AX phosphorylation is required for DNA ladder formation, but not for the activation of caspase-3; and the JNK/H2AX pathway cooperates with the caspase-3/CAD pathway resulting in cellular apoptosis.  相似文献   

14.
15.
16.
Repair of products of oxidative DNA base damage in human cells.   总被引:13,自引:5,他引:8       下载免费PDF全文
Oxidative DNA damage is the most frequent type of damage encountered by aerobic cells and may play an important role in biological processes such as mutagenesis, carcinogenesis and aging in humans. Oxidative damage generates a myriad of modifications in DNA. We investigated the cellular repair of DNA base damage products in DNA of cultured human lymphoblast cells, which were exposed to oxidative stress by H2O2. This DNA-damaging agent is known to cause base modifications in genomic DNA of mammalian cells [Dizdaroglu, M., Nackerdien, Z., Chao, B.-C., Gajewski, E. and Rao, G. (1991) Arch. Biochem. Biophys. 285, 388-390]. Following treatment with H2O2, the culture medium was freed from H2O2 and cells were incubated for time periods ranging from 10 min to 6 h. DNA was isolated from control cells, hydrogen peroxide-treated cells and cells incubated after H2O2 exposure. DNA samples were analyzed by gas chromatography/isotope-dilution mass spectrometry. Eleven modified bases were identified and quantified. The results showed a significant formation of these DNA base products upon H2O2-treatment of cells. Subsequent incubation of cells caused a time-dependent excision of these products from cellular DNA. The cell viability did not change significantly by various treatments. There were distinct differences between the kinetics of excision of individual products. The observed excisions were attributed to DNA repair in cells. The rate of repair of purine lesions was slower than that of pyrimidine lesions. Most of the identified products are known to possess various premutagenic properties. The results of this work may contribute to the understanding of the cellular repair of oxidative DNA damage in human and other mammalian cells.  相似文献   

17.
Muller C  Calsou P  Salles B 《Biochimie》2000,82(1):25-28
The DNA-dependent protein kinase plays a critical role in mammalian DNA double strand break (DSB) repair and in specialized recombination, such as lymphoid V(D)J recombination. Its regulatory subunit Ku (dimer of the Ku70 and Ku80 protein) binds to DNA and recruits the kinase catalytic sub-unit, DNA-PKcs. We show here that three different strains deficient in either the Ku80 (xrs-6) or DNA-PKcs (V-3, scid) component of DNA-PK are markedly sensitive (3.5- to 5-fold) to a group of DNA cross-linking agents, the nitrogen mustards (NMs) (melphalan and mechlorethamine) as compared to their parental cell line. Importantly, the level of hypersensitivity to these drugs was close to the level of hypersensitivity observed for radiomimetic agents that create DSBs in DNA (bleomycin and neocarzinostatin). In addition, sensitivity to NMs was restored to the parental level in the xrs-6 cell line stably transfected with the human Ku80 gene (xrs-6/Ku80), showing unequivocally that DNA-PK is involved in this phenotype. These results indicate that a function of the whole DNA-PK protein complex is involved in the cellular response to NMs and suggest that the repair of DNA interstrand cross-links induced in DNA by NMs involved a DNA-PK dependent pathway that shares common features with DNA DSBs repair.  相似文献   

18.
Ionizing radiation, but not stimulation with epidermal growth factor (EGF), triggers EGF receptor (EGFR) import into the nucleus in a probably karyopherin alpha-linked manner. An increase in nuclear EGFR is also observed after treatment with H2O2, heat, or cisplatin. During, this process, the proteins Ku70/80 and the protein phosphatase 1 are transported into the nucleus. As a consequence, an increase in the nuclear kinase activity of DNA-dependent kinase (DNA-PK) and increased formation of the DNA end-binding protein complexes containing DNA-PK, essential for repair of DNA-strand breaks, occurred. Blockade of EGFR import by the anti-EGFR monoclonal antibody C225 abolished EGFR import into the nucleus and radiation-induced activation of DNA-PK, inhibited DNA repair, and increased radiosensitivity of treated cells. Our data implicate a novel function of the EGFR during DNA repair processes.  相似文献   

19.
In eukaryotes the non-homologous end-joining repair of double strand breaks in DNA is executed by a series of proteins that bring about the synapsis, preparation and ligation of the broken DNA ends. The mechanism of this process appears to be initiated by the obligate heterodimer (Ku70/Ku86) protein complex Ku that has affinity for DNA ends. Ku then recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The three-dimensional structures of the major part of the Ku heterodimer, representing the DNA-binding core, both free and bound to DNA are known from X-ray crystallography. However, these structures lack a region of ca 190 residues from the C-terminal region (CTR) of the Ku86 subunit (also known as Lupus Ku autoantigen p86, Ku80, or XRCC5) that includes the extreme C-terminal tail that is reported to be sufficient for DNA-PKcs-binding. We have examined the structural characteristics of the Ku86CTR protein expressed in bacteria. By deletion mutagenesis and heteronuclear NMR spectroscopy we localised a globular domain consisting of residues 592-709. Constructs comprising additional residues either to the N-terminal side (residues 543-709), or the C-terminal side (residues 592-732), which includes the putative DNA-PKcs-binding motif, yielded NMR spectra consistent with these extra regions lacking ordered structure. The three-dimensional solution structure of the core globular domain of the C-terminal region of Ku86 (Ku86CTR(592-709)) has been determined using heteronuclear NMR spectroscopy and dynamical simulated annealing using structural restraints from nuclear Overhauser effect spectroscopy, and scalar and residual dipolar couplings. The polypeptide fold comprises six regions of alpha-helical secondary structure that has an overall superhelical topology remotely homologous to the MIF4G homology domain of the human nuclear cap binding protein 80 kDa subunit and the VHS domain of the Drosophila protein Hrs, though strict analysis of the structures suggests that these domains are not functionally related. Two prominent hydrophobic pockets in the gap between helices alpha2 and alpha4 suggest a potential ligand-binding characteristic for this globular domain.  相似文献   

20.
In mammalian cells, chromatin poly(ADP-ribos)ylation (PARylation) at sites of DNA Double-Strand Breaks (DSBs) is mediated by two highly related enzymes, PARP1 and PARP2. However, enzyme-specific genetic interactions with other DSB repair factors remain largely undefined. In this context, it was previously shown that mice lacking PARP1 and H2AX, a histone variant that promotes DSB repair throughout the cell cycle, or the core nonhomologous end-joining (NHEJ) factor Ku80 are not viable, while mice lacking PARP1 and the noncore NHEJ factor DNA-PKcs are severely growth retarded and markedly lymphoma-prone. Here, we have examined the requirement for PARP2 in these backgrounds. We find that, like PARP1, PARP2 is essential for viability in mice lacking H2AX. Moreover, treatment of H2AX-deficient primary fibroblasts or B lymphocytes with PARP inhibitors leads to activation of the G2/M checkpoint and accumulation of chromatid-type breaks in a lineage- and gene-dose dependent manner. In marked contrast to PARP1, loss of PARP2 does not result in additional phenotypes in growth, development or tumorigenesis in mice lacking either Ku80 or DNA-PKcs. Altogether these findings highlight specific nonoverlapping functions of PARP1 and PARP2 at H2AX-deficient chromatin during replicative phases of the cell cycle and uncover a unique requirement for PARP1 in NHEJ-deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号