首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A heat-stable endoribonuclease isolated from chicken liver has been purified to homogeneity as evidenced by the presence of a single protein band upon polyacrylamide gel electrophoresis. The enzyme can, in limit digests of 5 S rRNA and 5.8 S rRNA, dinstinguish between cytidylic and uridylic acids bonds at a ratio of 61:1 and, therefore, may be useful in RNA sequence analysis. The means by which the enzyme hydrolyzes substrate is unusual in that kinetic data do not support a simple formation and breakdown of an enzyme . substrate complex. Rather, the existence of a second complex, consisting of 2 mol of substrate and one of enzyme, derived from the initial enzyme . substrate complex, is postulated. In common with the other endonucleases, enzyme activity is inhibited by free poly(A) or tracts of the polypurine present at the 3'-terminus of RNA. Reversal of inhibition and restoration of activity may be achieved by the addition of low concentrations of spermidine to reaction mixtures.  相似文献   

2.
Streptomyces sp. 142, isolated from a soil sample, produced alpha-fucosidase when cultured in the presence of L-fucose. The enzyme was purified 700-fold with an overall recovery of 17% from a cell-free extract by cation exchange chromatography and gel filtration chromatography. The apparent molecular weight of the purified enzyme was 40,000 by gel filtration chromatography. The enzyme had a pH optimum of 6.0 and was stable at pH 4.5-7.0. Substrate specificity studies with oligosaccharides labeled with 2-aminopyridine as the substrate showed that the enzyme specifically hydrolyzed terminal alpha 1-3 and alpha 1-4 fucosidic linkages in the oligosaccharides but did not hydrolyze alpha 1-2 or alpha 1-6 fucosidic linkages or a synthetic substrate, p-nitro-phenyl alpha-L-fucoside. The purified enzyme released L-fucose from a fucosylated glycoprotein, alpha 1-acid glycoprotein. Thus, the substrate specificities of the Streptomyces alpha-fucosidase resembled those of alpha-fucosidases I and III isolated from almond emulsin rather than those of other microbial alpha-fucosidases.  相似文献   

3.
A modified form of aspartate transcarbamylase is synthesized by Escherichia coli in the presence of 2-thiouracil which does not exhibit homotropic cooperative interactions between active sites yet retains heterotropic cooperative interactions due to nucleotide binding. The conformational changes induced in the modified enzyme by the binding of different ligands (substrates, substrate analogs, a transition state analog, and nucleotide effectors) were studied using ultraviolet absorbance and circular dichroism difference spectroscopy. Comparison of the results for the modified enzyme and its isolated subunits to those for the native enzyme and its isolated subunits showed that the conformational changes detected by these methods are qualitatively similar in the two enzymes. Comparison of the absorbance difference spectra due to the binding of a transition substrate analog to the intact native or modified enzymes to the corresponding results for the isolated subunits suggested that ligand binding causes an increased exposure to solvent of certain tyrosyl and phenylalanyl residues in the intact enzymes but not in the isolated subunits. This result is consistent with a diminution of subunit contacts due to substrate binding in the course of homotropic interactions in the native enzyme. Such conformational changes, though perhaps necessary for homotropic cooperativity, are not sufficient to cause homotropic cooperativity since the modified enzyme gave identical perturbations. Interactions of the transition state analog, N-(phosphonacetyl)-L-aspartate, with the modified enzyme were studied. Enzyme kinetic data obtained at low aspartate concentrations showed that this transition state analog does not stimulate activity, but rather exhibits the inhibition predicted for the total absence of homotropic cooperative interactions in the modified enzyme. Spectrophotometric titrations of the number of catalytic sites with the transition state analog showed that the modified enzyme and its isolated subunits possess, respectively, four and two high affinity sites for the inhibitor instead of six and three observed in the case of the normal enzyme and its isolated catalytic subunits. These results are correlated with the lower specific enzymatic activities of the modified enzyme and its catalytic subunits compared to the normal corresponding enzymatic species.  相似文献   

4.
Extracellular proteases secreted by the filamentous fungus Trichoderma harzianum have been identified. A proteinase active towards Z-Ala-Ala-Leu-pNa--the substrate of subtilisin-like proteases--dominated in the culture medium. This proteinase is synthesized de novo in response to addition of a protein substrate to the medium. Changing the carbohydrate in the culture medium changed the quantitative and qualitative spectrum of secreted enzymes. The most active extracellular proteinase of Trichoderma harzianum was purified 322-foldfrom the culture medium and obtained with a yield of 7.2%. The molecular mass of this proteinase is 73 kD and its pI is 5.35. The isolated enzyme has two distinct activity maxima, at pH 7.5 and 10.0, and is stable in the pH range 6.0-11.0. The temperature optimum for enzyme activity is 40 degrees C at pH 8. 0. The proteinase is stable up to 45-50 degrees C (depending on the substrate used). Calcium ions stabilized the enzyme at 55-60 degrees C. According to data on the study of functional groups of the active center and substrate specificity, the enzyme isolated from the culture medium of Trichoderma harzianum is a subtilisin-like serine proteinase.  相似文献   

5.
R B Harris  I B Wilson 《Peptides》1985,6(3):393-396
We are examining the substrate specificity of atrial dipeptidyl carboxyhydrolase, a membrane-bound metallo enzyme that we isolated from bovine atrial tissue homogenates. This enzyme readily removes the dipeptide, Phe-Arg, from Bz-Gly-Ser-Phe-Arg, a stand-in substrate for atriopeptin II, one of several atrial natriuretic factors. We now report that the atrial enzyme cleaves the C-terminal dipeptide, Phe-Arg, from atriopeptin II to form atriopeptin I. The km (pH 7.5) is 25 microM and the ratio of relative Vmax/km as a measure of substrate specificity indicates that atriopeptin II is a 240-fold better substrate than Bz-Gly-His-Leu. Only Phe-Arg was detected as a hydrolysis product, indicating that sequential cleavage of Asn-Ser from atriopeptin II does not occur, and that atriopeptin I is not a substrate. Bz-Gly-Asn-Ser was as good a substrate for the atrial enzyme as Bz-Gly-His-Leu, but Bz-Cys(bzl)-Asn-Ser was not hydrolyzed. This result suggests that the presence of an intact disulfide bond or an S-alkylated residue in the P1 position of a substrate (as in atriopeptin I) prevents hydrolysis by the atrial enzyme. Comparative studies were made with the angiotensin I converting enzyme. Atriopeptin II was not a substrate. The stand-in substrates for atriopeptin I, Bz-Cys(bzl)-Asn-Ser and Bz-Gly-Asn-Ser were barely hydrolyzed, which by itself suggests that atriopeptin I is not a substrate of the angiotensin converting enzyme. Our results strongly suggest that atriopeptin II is converted to atriopeptin I and that hydrolysis is mediated by the atrial enzyme. The angiotensin I converting enzyme plays no role in processing these peptides. We suggest that the atrial enzyme be named atrial peptide convertase.  相似文献   

6.
The kinetics of the hydrolysis of p-nitrophenyl-beta-D-galactopyranoside (pNPG) by a thermophile, beta-galactosidase, was studied at different temperatures. This enzyme was isolated from the thermophilic microorganism archaebacterium Caldariella acidophila. The hydrolysis of pNPG by beta-galactosidase does not follow Michaelis-Menten law. This enzyme is inhibited by excess substrate at low temperatures and it is activated by excess substrate at high temperatures. A minimum mechanistic model is proposed to explain the behaviour. This model assumes the binding of an additional substrate molecule on the glycosidyl enzyme intermediate. This model is in good agreement with the postulated mechanism for beta-galactosidase from Escherichia coli. The kinetic parameters are calculated at six different temperatures.  相似文献   

7.
The 5-mercury derivative of dCMP is a substrate of deoxycytidylate aminohydrolase in the presence of mercaptoethanol. With this substrate a reversal of the effect of the allosteric ligands of the enzyme is observed. dCTP, which is an allosteric activator for aminohydrolysis of dCMP, becomes an inhibitor for the mercury substrate, whilst dTTP, an allosteric inhibitor for dCMP, becomes an activator for the mercury substrate.This observation has been interpreted by assuming that dCMP-Hg-S-CH2-CH2-OH is a substrate of the T form of the enzyme. By reacting dCMP-aminohydrolase in the T form (in the presence of dTTP) with glutaraldehyde, an enzyme has been isolated that is no longer active with dCMP, while it is fully active with the mercurated analog. Gel electrophoresis demonstrated that glutaraldehyde does not produce intermolecular crosslinks, but fixes 95% of the enzyme in a stable hexameric form by intramolecular crosslinks. The data are explained by assuming that glutaraldehyde stabilizes the enzyme in the T conformation.  相似文献   

8.
A proteolytic enzyme with the activity of 8-26 U/mg protein was isolated from purified animal myelin preparation obtained by an original technique. The optimal pH of the enzyme was found to be 9.6-9.8. Its substrate specificity was studied. An enzyme with similar characteristics and identical electrophoretic mobility was isolated from the blood serum of patients with disseminated sclerosis and then purified. The major part of the enzyme activity in the blood and myelin was bound and was manifested only after special treatment. It is suggested that a similar proteolytic enzyme is present in human myelin, whose activation in demyelinating diseases may result in myelin destruction.  相似文献   

9.
An aminopeptidase fromStreptococcus sanguis NCTC 10904 was isolated, purified, and characterized. The enzyme was produced constitutively and could be isolated from the cytoplasmic fraction of lysed cells. Its substrate profile indicated that it is primarily a leucyl aminopeptidase, but with a substrate spectrum including lysyl- and arginyl-peptides. The subunit molecular weight of the enzyme was approximately 74,000, but an octomeric form also was prominent, as indicated by gel filtration separations of active enzymes. The optimal temperature for activity was 32°C, and the optimal pH value was about 7.0. The enzyme showed cooperative kinetics and was activated by Co2+. The regulation of synthesis and the characteristics of the enzyme suggest that it may serve a regulatory function rather than just a nutritional function.  相似文献   

10.
A novel colanic acid-degrading enzyme was isolated from a mixed culture filtrate obtained by enrichment culturing of a compost sample using colanic acid as carbon source. The enzyme was partially purified resulting in a 17-fold increase in specific activity. Further purification by Native PAGE revealed that the enzyme is part of a high-molecular weight multi protein complex of at least six individual proteins. The enzyme showed a temperature optimum at 50 degrees C while after 5h at 50 degrees C and pH7 still 70% of the total activity was left. The pH optimum was found to be pH7. Analysis of the degradation products showed that the enzyme is a novel 1,4-beta-fucoside hydrolase that liberates repeating units of colanic acid with varying degrees of acetylation. Km and Vmax of the enzyme were determined against the native substrate as well as its de-O-acetylated and depyruvated forms. Compared to the native substrate the affinity of the enzyme for the modified substrates was much lower. However, for the de-O-acetylated sample a dramatic increase in catalytic efficiency was observed. The native form of the substrate showed substrate inhibition at high concentrations, probably due to the formation of nonproductive substrate complexes. Removal of the acetyl groups probably prevents this effect resulting in a higher catalytic efficiency.  相似文献   

11.
Summary Our previous report indicated a Triton-stimulated NDPase was specifically associated with Golgi membranes isolated from corn roots. Characterization of the enzyme indicates that UDP is the slightly preferred substrate with Mn2+ the preferred divalent cation. Monovalent cations do not further activate the Triton-stimulated UDPase activity. The enzyme has a pH optimum at 6.5 and a temperature optimum between 38–40°C. Kinetic analyses indicate that UDP-Mn2+ is the substrate for the enzyme.Properties of the Triton-stimulated NDPase are compared to other membrane associated NDPases isolated from plants, animals and fungi. Characteristics and subcellular location of NDPase activity are discussed in relation to the possible biochemical role of the enzyme.This research was supported in part by National Science Foundation grant CDP 79-7927121 and funds provided by Bronfman Science Center, Williams College.  相似文献   

12.
p-Nitrophenyl and eugenyl beta-primeveroside (6-O-beta-D-xylopyranosyl-beta-D-glucopyranoside) hydrolytic activity was found in culture filtrate from Penicillium multicolor IAM7153, and the enzyme was isolated. The enzyme was purified as a beta-primeverosidase-like enzyme by precipitation with ammonium sulfate followed by successive chromatographies on Phenyl Sepharose, Mono Q, and beta-galactosylamidine affinity columns. The molecular mass was estimated to be 50 kDa by SDS-PAGE and gel filtration. The purified enzyme was highly specific toward the substrate p-nitrophenyl beta-primeveroside, which was cleaved in an endo-manner into primeverose and p-nitrophenol, but a series of beta-primeveroside as aroma precursors were hydrolyzed only slightly as substrates for the enzyme. In analyses of its hydrolytic action and kinetics, the enzyme showed narrow substrate specificity with respect to the aglycon and glycon moieties of the diglycoside. We conclude that the present enzyme is a kind of beta-diglycosidase rather than beta-primeverosidase.  相似文献   

13.
Bile acid-CoA:glycine-taurine N-acyltransferase was found to catalyze a reaction in the absence of glycine or taurine in which the substrate cholyl-CoA is cleaved with the release of CoA and the formation of a covalently bound enzyme-cholate intermediate. This unstable intermediate was trapped by a rapid mixing and denaturation procedure. The denatured protein was digested with trypsin and the cholate-labeled tryptic peptide was isolated. This cholate-peptide is considered to originate from the active site region of the enzyme based on the following criteria: cholyl-CoA does not react with any of the 20 common amino acids, the hydrolysis of cholyl-CoA is known to occur on the enzyme, the lack of reaction of the enzyme with just cholate, and the fact that labeling is extensive even at low (substrate level) concentrations of cholyl-CoA. The isolated cholate-peptide was submitted to amino acid analysis. It contained 32 amino acid residues and was devoid of cysteine, methionine, and tyrosine. Amino acid analysis of the N-acyltransferase was conducted. The enzyme was also shown to possess a blocked N terminus.  相似文献   

14.
The present study attempts to determine if the isolated rat liver is capable of synthesizing renin substrate from 14C-labelled amino acids added in the perfusate. The renin substrate is characterized via reaction with renin, forming a substance that is subsequently identified as proangiotensin. Extensive evaluation of the reaction product is carried out by using molecular-sieve chromatography, countercurrent distribution, reactivity with converting enzyme, radioimmunological technique and bioassay. The results demonstrate that isolated rat liver perfused with artificial salt solution is capable of synthesizing a protein that reacts with renin to form a radioactive substance indistinguishable from proangiotensin.  相似文献   

15.
The hydrolysis of MgATP by isolated rat liver mitochondrial ATPase (EC 3.6.1.3) at pH 8.0 was stimulated by various anions. The rate of hydrolysis was increased from 18 to 170 mumol per min per mg, a 9.4-fold stimulation, by HSeO3 at 1 mM MgATP. In the absence of a stimulatory anion, reciprocal plots of initial velocity studies with MgATP as the variable substrate were curved (Hill coefficient approximately 0.5). With the addition of anion, the reciprocal plots became linear. When the substrate was MgITP or MgGTP with the isolated enzyme or MgATP with submitochondrial particles, no curvature of the reciprocal plots was observed. With purified ATPase, anions stimulated the hydrolysis of MgITP, MgGTP, MgUTP or MgCTP only slightly. With submitochondrial particles the stimulation by anions of MgATP hydrolysis was limited to approximately 2-fold. These data are interpreted to indicate the existence of two substrate sites for MgATP and an anion-binding site on the isolated enzyme.  相似文献   

16.
During the course of investigations on the catabolism of acetylpolyamines by microorganisms, we found that acetylpolyamine amidohydrolase was produced by Mycoplana bullata FERM BP-1845 and isolated the enzyme from the cell-free extract in crystalline form. The enzyme had an apparent molecular weight of 67 kDa and was composed of two identical subunits. The enzyme activity was inhibited by o-oxyquinoline and the crystalline enzyme contained one zinc atom per each subunit. The enzyme had an optimal pH around 8.0 with acetylputrescine as substrate and showed broad substrate specificity and high affinity towards various acetylpolyamines, such as acetylputrescine, acetylcadaverine, acetylspermidine, and acetylspermine.  相似文献   

17.
Autolytic defective mutant of Streptococcus faecalis.   总被引:21,自引:14,他引:7       下载免费PDF全文
Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme.  相似文献   

18.
Precursors of cathepsin D and beta-hexosaminidase were isolated from secretions of human fibroblasts and their activity was studied with natural substrates. The immunoprecipitated precursor of cathepsin D, Mr 53000, was inactive with radioactive hemoglobin as substrate. At pH 3.8-4.2 an activation of the precursor took place, which was correlated by a reduction in size to Mr 51500. The observed cleavage of cathepsin D precursor in vitro resembles the autocatalytic activation of pepsinogen. The precursor of beta-hexosaminidase A is able to cleave the natural substrate GM2 ganglioside. This reaction, like that of the mature enzyme, depends on the presence of a protein activator, which interacts with the substrate and the enzyme.  相似文献   

19.
1. Acid phosphatase (AcPase) from liver of the frog, Rana esculenta has been isolated and purified. The enzyme is heterogeneous, showing 4 activity zones on disc electrophoresis. The AcPase was separated into 3 peaks on DEAE-cellulose. Peak A corresponding to the electrophoretic AcPase IV represents an extensively purified enzyme form. 2. The separated enzyme forms are change isomers with a molecular weight of about 33,000. They differ markedly in substrate requirements and sensitivity towards activators and inhibitors. All of them are highly activated by dithiothreitol, show a rather restricted substrate specificity, and marked activity against ATP.  相似文献   

20.
The role of conformational changes in the allosteric mechanism of aspartate transcarbamoylase from Escherichia coli was studied by reacting the isolated catalytic subunit with the bifunctional reagent tartryl diazide. Two derivatives differing moderately in substrate affinity were obtained depending on whether the reaction was conducted in the presence or absence of the substrate analogue succinate and carbamoyl phosphate. The modification was not accompanied by aggregation or dissociation. The modified catalytic subunits retained the ability to reassociate with unmodified regulatory subunits and produced hybrids similar in size to the native enzyme. These hybrids were appreciably sensitive to the allosteric effectors ATP and CTP but unlike native enzyme showed no cooperativity in substrate binding. The Michaelis constants of these hybrids for aspartate were intermediate between that of the isolated catalytic subunit and that of the relaxed state. Activation by ATP was caused by a reduction in Km to the value characteristic of the relaxed state whereas CTP inhibited by lowering the Vmax. The properties of the hybrids are strikingly similar to the modified enzyme obtained by Kerbiriou and Hervé from cells grown in the presence of 2-thiouracil. However, the crucial modifications are found in the regulatory subunits of the enzyme studied by these authors whereas they are located in the catalytic subunits of the hybrids reported here. Our results suggest that interactions between the catalytic and regulatory subunits have considerable effects on the state of the substrate binding sites in the native enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号