首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro production of embryos in swine.   总被引:4,自引:0,他引:4  
In recent years, progress has been achieved in the production of pig embryos through IVM and IVF techniques. Cytoplasmic maturation of oocytes has been improved by modifications to IVM procedures. However, the historical problem of polyspermic penetration still remains a major issue to be solved. Recent studies indicate that the type of IVF medium and certain modifications to that medium can reduce polyspermy. Efforts should be directed to increase the developmental competence and quality of embryos. At present, many embryo culture (EC) media are available that can overcome the historical 4-cell block and support development of early in vivo derived embryos to the blastocyst stage. In contrast, blastocyst development of in vitro produced embryos in these culture media varies significantly. Furthermore, morphology and cell numbers in in vitro produced blastocysts are inferior to their in vivo counterparts. However, several modifications to EC techniques have improved embryo quality and developmental competence. Testing embryo viability through surgical transfer to recipient animals has resulted in acceptable pregnancy rates with moderate litter sizes. Although reliable in vitro systems are available for the generation of pig embryos, the problem of polyspermy and poor embryo development hamper their large-scale implementation. Further research efforts should be directed to improve oocyte/embryo quality and the methods to minimize polyspermy through development of novel IVM, IVF, and EC techniques.  相似文献   

2.
Bovine in vitro embryo production is an inefficient process; while maturation and fertilization proceed apparently normally, the proportion of embryos reaching the transferable (blastocyst) stage is rarely over 40% and those that do reach this stage are often compromised in quality and competence. There is considerable evidence of a significant influence of follicular origin on oocyte developmental potential and it appears that once the oocyte is removed from the follicle its developmental capacity is capped. Evidence suggests that while culture conditions during bovine in vitro embryo production can impact somewhat the developmental potential of the early embryo, the intrinsic quality of the oocyte is the key factor determining the proportion of oocytes developing to the blastocyst stage. This paper highlights some of the problems associated with in vitro production of embryos and discusses some of the ways of overcoming these problems.  相似文献   

3.
《Cryobiology》2013,66(3):278-283
In order to investigate whether the kinetics and stage of embryo development affect cryosurvival of in vitro produced bovine embryos, cleaved embryos were categorized in six groups based on their developmental kinetics regarding the stage of embryonic block in bovine (8–16 cell stage): I and II – early (day 2) and late (day 3) 5–8 cell, III and IV – early (day 3) and late (day 4) 8–16 cell, and V and VI – early (day 4) and late (day 5) morula. The cryosurvival and developmental competence of these embryos were compared with each other and also with the corresponding control groups. The potential of 5–8 cell stage embryos to survive vitrification and further develop towards blastocyst stage was significantly lower than vitrified and un-vitrified 8–16 cell and morula stage embryos. These results suggest that, the survival rate and potential of embryos to develop towards blastocyst stage might be affected by the kinetic of the embryo development. Moreover, the results of this study indicated that the optimal stages of early embryo vitrification are post-embryonic block.  相似文献   

4.
The relationship between the oviduct and embryo development in the mouse was investigated and the period at which the influence of oviduct can be concerned in the development of mouse embryos in vitro was identified. In addition, the relative molecular weight of oviductal factors that promote embryo development was demonstrated. Mouse zygotes developed to the blastocyst stage when co-cultured with ampulla. The period of embryo co-culture significantly affected the further development of the embryos. Fewer one-cell embryos co-cultured with dissected ampullae for less than 24 h developed to blastocysts than those co-cultured for more than 28 h (P < 0.001). A high percentage of embryos co-cultured with ampullae after 24 h of culture in vitro developed to the blastocyst stage, which suggests that the influences of ampulla on the development of mouse embryos are restricted to a specific period at the two-cell stage (about 55-56 h after hCG injection) in vitro. Mouse ova that were cultured in media conditioned by ampullae could also develop to the blastocyst stage. The fractionated medium that contained low molecular weight fractions was more effective (P < 0.001) on the development of embryos to the blastocyst stage than that containing high molecular weight fractions. These results suggest that the low molecular weight oviductal factors play an important role in the development of mouse embryos at a certain critical age in vitro.  相似文献   

5.
目的应用鼠胚质控中的小鼠胚胎体外培养模型,探讨两种胚胎培养方式(四孔皿与微滴法)在单胚观察时间上的差异以及对2-细胞鼠胚体外发育潜能的影响。方法取6-8周龄的昆明白雌性小鼠。采用HMG10IU促排卵,48 h后注射HCG 10IU促卵泡成熟,取形态正常的2-细胞鼠胚。每5-10个胚胎培养在含500μL培养基的四孔皿中(A组),或单个胚胎接种在含50μL的培养微滴中(B组)。培养后,每隔24 h在倒置显微镜下观察一次,计算单胚观察时间,并检测24 h时的≥4细胞胚形成率、48 h的融合胚形成率7、2 h的囊胚与扩张囊胚形成率、96 h囊胚孵化率。结果两种培养方式于同一试验条件下分别试验5次,A组培养83个胚胎,B组培养69个2-细胞鼠胚。在每一个观察点上,微滴培养的单胚观察时间远超过四孔皿培养(P〈0.001)。但两组各时间点的胚胎发育率相似,无显著差异(P〉0.05)。结论尽管微滴单胚培养方式的胚胎暴露培养箱外时间长,但与四孔皿多胚培养方式比较,两者间2-细胞鼠胚的体外发育潜能相似。  相似文献   

6.
We have evaluated the morphology of the mouse preimplantation embryos at developmental stages from morula to late blastocyst after two different impacts: microinjection of modified Witten’s medium and osmotic stress in physiological osmolarity (310 mOsM), in 5% glucose (560 mOsM) at high concentration of NaCl (614 mOsM). Results of our research showed that these stresses caused similar changes in embryo morphology: volume was reduced followed by its recovery in culture medium (osmolality was less than a physiological value, 260 mOsM). The ability of embryos to recover the volume and morphology up to the initial level depends on a stage of embryo development and consequently competence of TB cells. In this study it was revealed that a key role in regulation of volume homeostasis after microinjection and after short-time (30–60 min) osmotic stress belongs to TB cells. Both physical effects induce the further embryo development in vitro up to the formation of primary colonies of embryonic and trophoblastic cells. These data could be used to develop the morphological criteria for a prediction of blastocyst-stage embryonic implantation potential.  相似文献   

7.
Responses of oocytes and embryos to the culture environment   总被引:5,自引:0,他引:5  
Embryo development is strongly influenced by events occurring during oocyte maturation. Although many immature oocytes are capable of completing meiosis in vitro, only a small percentage of the original pool of immature oocytes is competent to continue development to the blastocyst stage and subsequently result in a pregnancy. This indicates that maturation of oocytes in vitro may not be occurring in an entirely normal manner. Cytoplasmic changes occurring during maturation, collectively termed cytoplasmic maturation, are essential for embryonic development. The cytoplasm of the oocyte may play a crucial role in assembling the correct metabolic machinery for production of sufficient energy for cellular functions during maturation, cleavage and blastocyst formation. A better understanding of the structural, functional and metabolic characteristics of the oocyte during maturation, and the consequence of changes in these parameters on developmental competence is needed. Understanding the role of cytoplasmic changes during oocyte maturation will help increase the efficiency of in vitro embryo production. Better embryo production strategies will facilitate basic research into the control of early development, improve implementation in endangered species, provide a source of high quality oocytes for nuclear transfer and transgenic technologies and benefit the commercial embryo transfer industry.  相似文献   

8.
Aim of the study was to investigate the effect of vitrification on viability, cytoskeletal integrity and in vitro developmental competence after in vitro fertilization (IVF) of oocytes vitrified before or after in vitro maturation (IVM) using a pig model. Oocytes from abattoir-derived porcine ovaries were vitrified at either the germinal vesicle (GV) or metaphase II (MII) stage by modified solid surface vitrification (SSV). Oocyte viability was evaluated by stereomicroscopic observation whereas their nuclear stage and morphology of microtubules and F-actin were observed by confocal microscopy after immunostaining. Fertilization was assessed by orcein staining. The survival rate after vitrification was higher for MII-stage than for GV-stage oocytes. However, the ability of surviving oocytes to reach the MII stage after vitrification at the GV stage (GV-vitrified oocytes) was similar to that of control oocytes. Furthermore, after IVM, GV-vitrified oocytes had better spindle and F-actin integrity than oocytes vitrified at the MII stage (MII-vitrified oocytes). In accordance with this result, GV-vitrified oocytes had better ability to extrude the second polar body and support male pronucleus formation after in vitro fertilization (IVF), in comparison to MII-vitrified oocytes. Fertilization rates did not differ among groups. Finally, the ability of GV-vitrified oocytes to develop into embryos was superior to that of MII-vitrified oocytes. However, both vitrified groups showed reduced blastocyst development compared with the control group. In conclusion vitrification of porcine oocytes at the GV stage is advantageous in conferring better cytoskeletal organization and competence to develop to the blastocyst stage in comparison with vitrification at the MII stage.  相似文献   

9.
In order to investigate whether the kinetics and stage of embryo development affect cryosurvival of in vitro produced bovine embryos, cleaved embryos were categorized in six groups based on their developmental kinetics regarding the stage of embryonic block in bovine (8–16 cell stage): I and II – early (day 2) and late (day 3) 5–8 cell, III and IV – early (day 3) and late (day 4) 8–16 cell, and V and VI – early (day 4) and late (day 5) morula. The cryosurvival and developmental competence of these embryos were compared with each other and also with the corresponding control groups. The potential of 5–8 cell stage embryos to survive vitrification and further develop towards blastocyst stage was significantly lower than vitrified and un-vitrified 8–16 cell and morula stage embryos. These results suggest that, the survival rate and potential of embryos to develop towards blastocyst stage might be affected by the kinetic of the embryo development. Moreover, the results of this study indicated that the optimal stages of early embryo vitrification are post-embryonic block.  相似文献   

10.
Effects of age and season on the developmental capacity of oocytes from unstimulated and FSH-stimulated rhesus monkeys were examined. Immature cumulus-oocyte complexes were matured in vitro in modified CMRL-1066 medium containing 20% bovine calf serum and subjected to in vitro fertilization followed by embryo culture. After fertilization, ova from unstimulated prepubertal monkeys displayed lower development to morula (4%) than those from unstimulated adult females (18% in breeding season and 22% in nonbreeding season). No developmental difference was found between ova from unstimulated adult monkeys in breeding and nonbreeding seasons. However, ova from FSH-primed prepubertal monkeys displayed greater development to blastocyst stage (54%) than those from adult monkeys in the breeding season (16%) and nonbreeding season (0%); and ova from FSH-primed adult females in the breeding season had significantly (P < 0.05) greater developmental competence than those obtained in the nonbreeding season (> or = morula stage, 54% vs. 3%; blastocyst stage, 16% vs. 0%). These data indicate that 1) rhesus monkey oocytes acquire developmental competence in a donor age-dependent manner, and 2) animal age and breeding season modulate the effect of FSH on oocyte developmental competence in the rhesus monkey.  相似文献   

11.
Peterson AJ  Lee RS 《Theriogenology》2003,59(2):687-697
Over the past 20 years the rate of blastocyst development in vitro has improved through the development of sequential defined media, refining the oxygen concentrations during culture and providing substrates to ameliorate free radical accumulation. Despite these advances there has been little progress in improving calving rates after the transfer of in vitro produced embryos. This suggests that the culture conditions have been very effective in enabling those fertilised oocytes to reach the blastocyst stage that otherwise would not occur in vivo.We suggest that the next advance by which the embryo transfer technology gains more acceptance in cattle production will be identifying those cows which are intrinsically superior recipients. This must be coupled to the development of non-invasive assessments of the developmental competence of both the oocyte and the blastocyst. Until these two goals are achieved the ET industry will remain static and unable to overcome the economic loss caused by embryo mortality occurring 7-10 days after transfer.  相似文献   

12.
Contribution of the oocyte to embryo quality   总被引:5,自引:0,他引:5  
The ability of a bovine embryo to develop to the blastocyst stage, to implant and to generate a healthy offspring is not a simple process. To clarify the importance of the contribution of the oocyte to the embryo quality, it is important to define more precisely the different types of competence expressed by oocytes. The ability to resume meiosis, to cleave upon fertilization to develop into a blastocyst, to induce pregnancy and to generate an healthy offspring are all separate events and succeeding in the first events does not ensure the success of subsequent ones. Furthermore, these events are associated with the three types of maturation processes observed in the oocyte: meiotic, cytoplasmic and molecular. These abilities vary also upon the type of follicle the oocytes is removed from. Larger or slow-growing follicles have been shown to foster better eggs than small or actively growing follicles. Hormonal stimulation can also affect oocyte competence with the nature of the effect (positive or negative) depending on timing and dose. This complex situation requires better definition of the contribution of each factor affecting the oocyte competence and the resulting embryo quality.  相似文献   

13.
We report the successful cryopreservation of in vitro-produced porcine zygotes. Follicular oocytes from prepubertal gilts were matured (IVM), fertilized (IVF), and cultured (IVC) in vitro. At 10 or 23 h after IVF, the oocytes were centrifuged to visualize pronuclei. Zygotes with two or three pronuclei were used for solid surface vitrification (SSV). Survival of vitrified-warmed zygotes was determined by their morphology. To assess their developmental competence, vitrified (SSV), cryoprotectant-treated (CPA), and untreated (control) zygotes were subjected to IVC for 6 days. Survival and developmental competence did not differ between control and CPA zygotes. The proportion of live zygotes after SSV and warming (93.4%) was similar to that in the controls (100%). Cleavage and blastocyst formation rates of SSV zygotes after vitrification (71.7% and 15.8%, respectively) were significantly lower than those of controls (86.3% and 24.5%, respectively; ANOVA P<0.05). Blastocyst cell numbers of SSV and control embryos were similar (41.2+/-3.4 and 41.6+/-3.3, respectively). There was no difference in developmental ability between zygotes cryopreserved at an early (10 h after IVF) or late (23 h after IVF) pronuclear stage. Storage in liquid nitrogen had no effect on the in vitro developmental competence of vitrified zygotes beyond the reduction induced by the vitrification itself. When the embryo culture medium was supplemented with 1 muM glutathione, the rate of development of cryopreserved zygotes to the blastocyst stage did not differ significantly from that of control glutathione-treated zygotes (18.6% and 22.1%, respectively). To test their ability to develop to term, vitrified zygotes were transferred to five recipients, resulting in three pregnancies and the production of a total of 17 piglets. These data demonstrate that IVM-IVF porcine zygotes can be cryopreserved at the pronuclear stage effectively without micromanipulation-derived delipation, preserving their full developmental competence to term.  相似文献   

14.
Despite the well-known benefits of omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation on human health, relatively little is known about the effect of n-3 PUFA intake on fertility. More specifically, the aim of this study was to determine how oocyte and preimplantation embryo development might be influenced by n-3 PUFA supply and to understand the possible mechanisms underlying these effects. Adult female mice were fed a control diet or a diet relatively high in the long-chain n-3 PUFAs for 4 wk, and ovulated oocytes or zygotes were collected after gonadotropin stimulation. Oocytes were examined for mitochondrial parameters (active mitochondrial distribution, mitochondrial calcium and membrane potential) and oxidative stress, and embryo developmental ability was assessed at the blastocyst stage following 1) in vitro fertilization (IVF) or 2) culture of in vivo-derived zygotes. This study demonstrated that exposure of the oocyte during maturation in the ovary to an environment high in n-3 PUFA resulted in altered mitochondrial distribution and calcium levels and increased production of reactive oxygen species. Despite normal fertilization and development in vitro following IVF, the exposure of oocytes to an environment high in n-3 PUFA during in vivo fertilization adversely affected the morphological appearance of the embryo and decreased developmental ability to the blastocyst stage. This study suggests that high maternal dietary n-3 PUFA exposure periconception reduces normal embryo development in the mouse and is associated with perturbed mitochondrial metabolism, raising questions regarding supplementation with n-3 PUFAs during this period of time.  相似文献   

15.
Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus?oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two‐cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.  相似文献   

16.
The developmental competence of oocytes from prepubertal and adult goats was studied through in vitro maturation, fertilization and embryo culture up to the blastocyst stage. Oocytes were recovered from antral follicles of prepubertal and adult goat ovaries, with or without ovarian stimulation with exogenous FSH. The effect of different sources of granulosa cells during IVM on the developmental competence of prepubertal goat oocytes was also noted. Oocytes were matured for 27 h at 38.5 degrees C in 5% CO(2) in air in 50-microl microdrops in TCM199 supplemented with 20% estrus goat serum, FSH, LH and estradiol-17beta or in 2 ml of the same medium supplemented with granulosa cells. Matured oocytes were inseminated with freshly ejaculated spermatozoa following capacitation At 24 h post-insemination, the oocytes were transferred to a granulosa cell monolayer, and early embryo development was evaluated until Day 10. Results show that the developmental ability of embryos from prepubertal goats after IVM and IVF is similar to those from adult goats. Treatment of the prepubertal and adult goats with FSH did not improve the developmental capacity of the resulting embryos. On studying the addition of different sources of granulosa cells to a maturation system of 2 ml of medium, a significantly positive effect of the cells from primed females was observed on the percentage of maturation, on embryo cleavage and on the percentage of embryos that overcame the in vitro developmental block from 8 to 16 cells.  相似文献   

17.
The optimal oxygen tension for development of preimplantation mouse embryos to the blastocyst stage in vitro was found to be between 2.5% and 5%. One- and two-cell embryos had a more sharply defined range of oxygen tension capable of supporting development than 8-cell and morula stages. At all stages of development, more embryos developed to the blastocyst stage under 5% O2 compared to the numbers of developing under higher oxygen tensions (20% and 40% O2). The blastocysts developing under 20% O2 had fewer blastomeres than those which developed under 5% O2. As the time required for development to the blastocyst stage in vitro increased, there were fewer blastomeres present at the blastocyst stage. These results indicate that the cleaving mouse embryo has an optimal oxygen requirement in vitro of about 5%. At higher oxygen tensions, fewer embryos develop to the blastocyst stage and in those which do develop, there are fewer cell divisions. If a gradient of oxygen tension exists across the blastomeres from the outside of the embryo to its centre, the blastomeres might be using this gradient to obtain imformation about their location within the embryo and respond accordingly. Thus blastomeres on the outside at a higher oxygen tension would divide at a slower rate and form trophectoderm whereas those on the inside at a lower oxygen tension would divide more rapidly and contribute to the inner cell mass.  相似文献   

18.
Mouse oocyte aged in vitro cannot develop normally following activation. To investigate the roles of nucleus or cytoplasm elements in oocyte aged in vitro process and their subsequent development capability following activation, we reconstructed oocytes with MII chromosome spindle and cytoplasm from aged and fresh oocytes by nuclear transfer. The subsequent developmental potential after parthenogenetic activation (PA) or in vitro fertilization (IVF) was evaluated. After nuclear transfer, more than 75.6% of karyoplast and cytoplast pairs can be fused and reconstructed oocytes have a normal haploid karyotype. Following PA, aged oocytes cannot develop beyond four-cell stage, reconstructed oocytes from fresh nucleus and aged cytoplasm developed to blastocyst with a low percentage (9.1%). Instead, blastocyst formation rate of reconstructed oocyte from aged nucleus and fresh cytoplasm was higher (60.0%). Following IVF, zygote with diploid karyotype can be formed from zona pellucida (ZP)-free oocyte. After cultured in vitro, aged oocytes cannot develop beyond two-cell; reconstructed oocytes from fresh nucleus and aged cytoplasm developed to blastocyst with low percentage (15.0%). However, high blastocyst formation rate (86.2%) can be obtained from reconstructed oocytes from aged nucleus and fresh cytoplasm. Furthermore, after embryo transfer, three viable pups have been obtained, although the efficiency is very low. These observation demonstrated that cytoplasm is more crucial than nucleus to aging process. Fresh cytoplasm could partly rescue nucleus susceptibility to apoptosis from aging in vitro.  相似文献   

19.
20.
Mitochondrial metabolic capacity and DNA replication have both been shown to affect oocyte quality, but it is unclear which one is more critical. In this study, immature oocytes were treated with FCCP or ddC to independently inhibit the respective mitochondrial metabolic capacity or DNA replication of oocytes during in vitro maturation. To differentiate their roles, we evaluated various parameters related to oocyte maturation (germinal vesicle break down and nuclear maturation), quality (spindle formation, chromosome alignment, and mitochondrial distribution pattern), fertilization capability, and subsequent embryo developmental competence (blastocyst formation and cell number of blastocyst). Inhibition of mitochondrial metabolic capacity with FCCP resulted in a reduced percent of oocytes with nuclear maturation; normal spindle formation and chromosome alignment; evenly distributed mitochondria; and an ability to form blastocysts. Inhibition of mtDNA replication with ddC has no detectable effect on oocyte maturation and mitochondrial distribution, although high-dose ddC increased the percent of oocytes showing abnormal spindle formation and chromosome alignment. ddC did, however, reduce blastocyst formation significantly. Neither FCCP nor ddC exposure had an effect on the rate of fertilization. These findings suggest that the effects associated with lower mitochondrial DNA copy number do not coincide with the effects seen with reduced mitochondrial metabolic activity in oocytes. Inhibiting mitochondrial metabolic activity during oocyte maturation has a negative impact on oocyte maturation and subsequent embryo developmental competence. A reduction in mitochondrial DNA copy number, on the other hand, mainly affects embryonic development potential, but has little effect on oocyte maturation and in vitro fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号