首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Although not simultaneously, resistin expression in white adipose tissue (WAT) and resistin plasma concentration have been shown to increase in pregnant rats. To clarify the involvement of sex hormones in such increases, we administered for 3-5 days progesterone, estradiol, or human chorionic gonadotropin (hCG) to female rats in dioestrus II. Progesterone increased resistin expression retroperitoneal WAT but lacked effect in parametrial or subcutaneous depots. It also increased resistin plasma concentration. Estradiol decreased resistin expression in both parametrial and inguinal WAT but was without effect on retroperitoneal depots. It did not alter plasma resistin. Human hCG increased resistin expression in all the visceral depots examined - parametrial, inguinal and retroperitoneal - but did not change plasma resistin. These results show that hormonal influences in resistin expression are depot-dependent and can run separately from changes in its plasma concentration. Besides, the locally restricted effect of progesterone in resistin expression compared with that of hCG suggests it is not the only hormone enhancing resistin expression in early pregnancy. However, it could enhance resistin release in late pregnancy. Estradiol could be involved in the decrease of resistin expression in late pregnancy. Finally, since hCG acts through LH receptors, our results suggest that they are present in WAT and that they control resistin expression.  相似文献   

2.
It now appears that, in most obese patients, obesity is associated with a low-grade inflammation of white adipose tissue (WAT) resulting from chronic activation of the innate immune system and which can subsequently lead to insulin resistance, impaired glucose tolerance and even diabetes. WAT is the physiological site of energy storage as lipids. In addition, it has been more recently recognized as an active participant in numerous physiological and pathophysiological processes. In obesity, WAT is characterized by an increased production and secretion of a wide range of inflammatory molecules including TNF-alpha and interleukin-6 (IL-6), which may have local effects on WAT physiology but also systemic effects on other organs. Recent data indicate that obese WAT is infiltrated by macrophages, which may be a major source of locally-produced pro-inflammatory cytokines. Interestingly, weight loss is associated with a reduction in the macrophage infiltration of WAT and an improvement of the inflammatory profile of gene expression. Several factors derived not only from adipocytes but also from infiltrated macrophages probably contribute to the pathogenesis of insulin resistance. Most of them are overproduced during obesity, including leptin, TNF-alpha, IL-6 and resistin. Conversely, expression and plasma levels of adiponectin, an insulin-sensitising effector, are down-regulated during obesity. Leptin could modulate TNF-alpha production and macrophage activation. TNF-alpha is overproduced in adipose tissue of several rodent models of obesity and has an important role in the pathogenesis of insulin resistance in these species. However, its actual involvement in glucose metabolism disorders in humans remains controversial. IL-6 production by human adipose tissue increases during obesity. It may induce hepatic CRP synthesis and may promote the onset of cardiovascular complications. Both TNF-alpha and IL-6 can alter insulin sensitivity by triggering different key steps in the insulin signalling pathway. In rodents, resistin can induce insulin resistance, while its implication in the control of insulin sensitivity is still a matter of debate in humans. Adiponectin is highly expressed in WAT, and circulating adiponectin levels are decreased in subjects with obesity-related insulin resistance, type 2 diabetes and coronary heart disease. Adiponectin inhibits liver neoglucogenesis and promotes fatty acid oxidation in skeletal muscle. In addition, adiponectin counteracts the pro-inflammatory effects of TNF-alpha on the arterial wall and probably protects against the development of arteriosclerosis. In obesity, the pro-inflammatory effects of cytokines through intracellular signalling pathways involve the NF-kappaB and JNK systems. Genetic or pharmacological manipulations of these effectors of the inflammatory response have been shown to modulate insulin sensitivity in different animal models. In humans, it has been suggested that the improved glucose tolerance observed in the presence of thiazolidinediones or statins is likely related to their anti-inflammatory properties. Thus, it can be considered that obesity corresponds to a sub-clinical inflammatory condition that promotes the production of pro-inflammatory factors involved in the pathogenesis of insulin resistance.  相似文献   

3.
Jiao K  Liu H  Chen J  Tian D  Hou J  Kaye AD 《Cytokine》2008,42(2):161-169
The role of adipokines in development of insulin resistance still remains controversial. The purpose of the present study was to examine the dynamic changes of fasting plasma levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), free fatty acids (FFA) and insulin in a Sprague-Dawley rat insulin resistant model induced by high-fat diet. Heterotopic deposition of triglycerides (TG) in liver, skeletal muscles and pancreatic islet was also investigated. The fasting plasma level of insulin in rats in the high-fat diet group was significantly higher than that in the normal diet group on day 21 (P<0.01), suggesting that an increased insulin resistance developed in the high-fat diet group. However, no significant difference in the plasma IL-6 level was observed between the two groups (P>0.05), although in both groups, the plasma IL-6 level was significantly higher on day 21 than that of the day 0 (P<0.05). The plasma FFA level in the high-fat diet group began to increase significantly on day 21 (P<0.05), and elevated markedly on day 28, was positively correlated to the fasting plasma insulin level. Histological study revealed a more abundant TG deposition in liver and skeletal muscles (from quadriceps femoris) in the high-fat diet group than in the normal diet group on day 21, and the liver deposition was even higher on day 28. However, no deposition was observed in pancreatic islets. The plasma TNF-alpha level remained unchanged throughout the duration of the experiment. These results indicate that the progression of insulin resistance in high-fat diet rats is closely related to the plasma FFA elevation and the heterotopic deposition of TG in liver and skeletal muscles, but is unrelated to the plasma TNF-alpha and IL-6 levels.  相似文献   

4.
5.
Obesity-related insulin resistance may be caused by adipokines such as IL-6, which is known to be elevated with the insulin resistance syndrome. A previous study reported that IL-6 knockout mice (IL-6(-/-)) developed maturity onset obesity, with disturbed carbohydrate and lipid metabolism, and increased leptin levels. Because IL-6 is associated with insulin resistance, one might have expected IL-6(-/-) mice to be more insulin sensitive. We examined body weights of growing and older IL-6(-/-) mice and found them to be similar to wild-type (IL-6(+/+)) mice. Dual-energy X-ray absorptiometry analysis at 3 and 14 mo revealed no differences in body composition. There were no differences in fasting blood insulin and glucose or in triglycerides. To further characterize these mice, we fed 11-mo-old IL-6(-/-) and IL-6(+/+) mice a high- (HF)- or low-fat diet for 14 wk, followed by insulin (ITT) and glucose tolerance tests (GTT). An ITT showed insulin resistance in the HF animals but no difference due to genotype. In the GTT, IL-6(-/-) mice demonstrated elevated postinjection glucose levels by 60% compared with IL-6(+/+) but only in the HF group. Although IL-6(-/-) mice gained weight and white adipose tissue (WAT) with the HF diet, they gained less weight than the IL-6(+/+) mice. Total lipoprotein lipase activity in WAT, muscle, and postheparin plasma was unchanged in the IL-6 (-/-) mice compared with IL-6(+/+) mice. There were no differences in plasma leptin or TNF-alpha due to genotype. Plasma adiponectin was approximately 53% higher (71.7 +/- 14.1 microg/ml) in IL-6(-/-) mice than in IL-6(+/+) mice but only in the HF group. Thus these data show that IL-6(-/-) mice do not demonstrate obesity, fasting hyperglycemia, or abnormal lipid metabolism, although HF IL-6(-/-) mice demonstrate elevated glucose after a GTT.  相似文献   

6.
Adipokines such as Plasminogen activator inhibitor-1 (PAI-1), interleukin (IL)-8, and tumor necrosis factor (TNF)-alpha are elevated in patients with obesity, insulin resistance, and type 2 diabetes. In the present study, we investigated whether glucose affected the production of these adipokines in human adipose tissue in vitro. Glucose (up to 35mM) increased secretion of PAI-1 (p<0.01) and IL-8 (p<0.01), but not TNF-alpha, in a dose- and time-dependent manner. Half-maximal stimulatory concentration of glucose was about 1mM. Glucosamine (5mM) decreased production of PAI-1 (p<0.05) and IL-8 (p<0.05), indicating that the hexosamine biosynthesis pathway is not involved in the glucose-induced increment in adipokine secretion. The present data demonstrate that glucose increases PAI-1 and IL-8 secretion. However, glucose concentrations above 5mM had no additional effects on adipokine secretion, suggesting that mechanisms other than diabetes/insulin resistance-related hyperglycemia may be involved in the observed elevation of these adipokines.  相似文献   

7.
Retinol-binding protein 4 (RBP4) and nicotinamide phosphoribosyltransferase/visfatin (Nampt/visfatin) are adipocyte-secreted proteins (adipokines) whose relevance to the metabolic syndrome and regulation in obesity remain controversial. Here, we tested the hypothesis that adipose tissue expression and circulating levels of these two adipokines are elevated in obesity by analyzing their changes in both a genetic and a diet-induced model of obesity in the rat (obese FA/ FA Zucker rats and Wistar rats fed a cafeteria diet, respectively). Compared with lean controls, obese FA/ FA rats were hyperleptinemic, hyperinsulinemic, and insulin resistant and had reduced RBP4 serum levels and mRNA levels in adipose depots, unchanged Nampt/visfatin serum levels, and reduced Nampt/visfatin mRNA levels selectively in the inguinal adipose depot. Cafeteria diet-induced obesity resulted in increased fed blood glucose levels, a variable degree of insulin resistance, unchanged serum Nampt/visfatin and RBP4 levels, and reduced mRNA levels of both adipokines in several adipose depots. Hence, increases in RBP4 or Nampt/visfatin do not accompany obesity and insulin resistance in the models examined.  相似文献   

8.
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.  相似文献   

9.
Pregnancy is characterized by changes in maternal adiposity. The aim of this study was to carry out a detailed analysis of the different steps of the adrenergic pathway, lipoprotein lipase (LPL) levels and adipocyte size, in order to evaluate the response of white adipose tissue (WAT) to the metabolic changes during pregnancy depending on the anatomical location. In general, the levels of the proteins of the lipolytic pathway decreased with pregnancy. In retroperitoneal WAT adenylate cyclase (AC) levels decreased from 100% in controls to 44% by day 13 and 11% by day 20. In mesenteric WAT the alpha (2A)/beta (3)-adrenergic receptor balance seemed to be one of the main regulatory points of the lipolytic pathway and the reduction in the postreceptor element levels was clearly lower than for the other two depots (PKA levels reduced from 100% in controls to 72% by day 20, while in the other two depots it decreased to 30%, and AC and HSL levels did not show statistically significant changes in this depot). In contrast, the LPL-to-HSL ratio may be a major regulatory point in gonadal WAT. In summary, we describe regional differences in the regulation of WAT metabolism throughout pregnancy, which may be of great importance to determine the role of the different fat depots during late pregnancy. Thus, gonadal and mesenteric WAT changed to a lipolytic state to sustain the rapid foetal growth, although with differences between them in the main regulatory points, while retroperitoneal WAT could have a role later on, during lactation.  相似文献   

10.
Energy is stored predominately as lipid in white adipose tissue (WAT) in distinct anatomical locations, with each site exerting different effects on key biological processes, including glucose homeostasis. To determine the relative contributions of subcutaneous and visceral WAT on glucose homeostasis, comparable amounts of adipose tissue from abdominal subcutaneous inguinal WAT (IWAT), intra-abdominal retroperitoneal WAT (RWAT), male gonadal epididymal WAT (EWAT), or female gonadal parametrial WAT (PWAT) were removed. Gonadal fat removal in both male and female chow-fed lean mice resulted in lowered glucose levels across glucose tolerance tests. Female lean C57BL/6J mice as well as male and female lean FVBN mice significantly improved glucose tolerance, indicated by decreased areas under glucose clearance curves. For the C57BL/6J mice maintained on a high-fat butter-based diet, glucose homeostasis was improved only in female mice with PWAT removal. Removal of IWAT or RWAT did not affect glucose tolerance in either dietary condition. We conclude that WAT contribution to glucose homeostasis is depot specific, with male gonadal EWAT contributing to glucose homeostasis in the lean state, whereas female gonadal PWAT contributes to glucose homeostasis in both lean and obese mice. These data illustrate both critical differences among various WAT depots and how they influence glucose homeostasis and highlight important differences between males and females in glucose regulation.  相似文献   

11.
High circulating levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are found in patients with hyperinsulinemia. Insulin stimulates release of IL-6 from adipocyte cultures, and it stimulates IL-6 gene expression in insulin-resistant, but not control, rat skeletal muscle. In addition, TNF-alpha may be involved in the pathogenesis of insulin resistance. Therefore, we studied the effect of insulin on IL-6 and TNF-alpha gene expression in human skeletal muscle and adipose tissue. Nine healthy young volunteers participated in the study. They underwent a 6-h hyperinsulinemic euglycemic clamp at a fixed insulin infusion rate, with blood glucose clamped at fasting level. Blood samples drawn at 0, 1, 2, 3, 4, 5, and 6 h were analyzed for IL-6 and TNF-alpha. Muscle and fat biopsies, obtained at 0, 2, 4, and 6 h, were analyzed for IL-6 and TNF-alpha mRNA with real-time PCR. IL-6 mRNA increased 11-, 3-, and 5-fold at 2, 4, and 6 h, respectively, in adipose tissue (ANOVA P = 0.027), whereas there was no significant effect of insulin on skeletal muscles. Plasma IL-6 increased during insulin stimulation. TNF-alpha mRNA increased 2.4-, 1.4-, and 2.2-fold in adipose tissue (ANOVA P = 0.001) and decreased 0.74-, 0.64-, and 0.68-fold in muscle tissue (ANOVA P = 0.04). Plasma levels of TNF-alpha were constant. In conclusion, the finding that insulin stimulates IL-6 and TNF-alpha gene expression in adipose tissue only and inhibits the TNF-alpha production in skeletal muscles suggests a differential regulation of muscle- and adipose tissue-derived IL-6 and TNF-alpha.  相似文献   

12.
ObjectiveThe main objective of this study was to evaluate the effect of procyanidin intake on the level of inflammatory mediators in rats fed a hyperlipidic diet, which are a model of low-grade inflammation as they show an altered cytokine production.DesignMale Zucker Fa/fa rats were randomly grouped to receive a low-fat (LF) diet, a high-fat (HF) diet or a high-fat diet supplemented with procyanidins from grape seed (HFPE) (345 mg/kg feed) for 19 weeks and were then euthanized. We determined biochemical parameters, C-reactive protein (CRP) and IL-6 levels in plasma. Adipose tissue depots and body weight were also determined. We assessed CRP, IL-6, TNF-α and adiponectin gene expression in liver and white adipose tissue (WAT).ResultsAs expected, rats fed the HF diet show an enhanced production of CRP. Our results demonstrate that the HFPE diet decreases rat plasma CRP levels but not IL-6 levels. The decrease in plasma CRP in HFPE rats is related to a down-regulation of CRP mRNA expression in the liver and mesenteric WAT. We have also shown a decrease in the expression of the proinflammatory cytokines TNF-α and IL-6 in the mesenteric WAT. In contrast, adiponectin mRNA is increased in this tissue due to the procyanidin treatment.As previously reported, CRP plasma levels correlate positively with its expression in the mesenteric WAT, suggesting that procyanidin extract (PE) modulates CRP at the synthesis level. CRP plasma levels also correlate positively with body weight. As expected, body weight is associated with the adiposity index. Also, TNF-α expression and IL-6 expression have a strong positive correlation. In contrast, the expression of the anti-inflammatory cytokine adiponectin correlates negatively with the expression of TNF-α and IL-6 in the mesenteric WAT.ConclusionThese results suggest a beneficial effect of PE on low-grade inflammatory diseases, which may be associated with the inhibition of the proinflammatory molecules CRP, IL-6 and TNF-α and the enhanced production of the anti-inflammatory cytokine adiponectin. These findings provide a strong impetus to explore the effects of dietary polyphenols in reducing obesity-related adipokine dysregulation to manage cardiovascular and metabolic risk factors.  相似文献   

13.
Human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) is a side effect of highly active antiretroviral therapy of HIV-infected patients; however, the mechanism of the lipodystrophy and insulin resistance seen in this syndrome remains elusive. Adiponectin, an adipocyte-specific protein, is thought to play an important role in regulating insulin sensitivity. We investigated circulating levels and gene expression of adiponectin in subcutaneous abdominal adipose tissue (AT) from 18 HIV-infected patients with HALS compared with 18 HIV-infected patients without HALS. Implications of cytokines for adiponectin levels were investigated by determining circulating levels of TNF-alpha, IL-6, and IL-8 as well as gene expression of these cytokines in AT. HALS patients exhibited 40% reduced plasma adiponectin levels (P < 0.05) compared with non-HALS subjects. Correspondingly, adiponectin mRNA levels in AT were reduced by >50% (P = 0.06). HALS patients were insulin resistant, and a positive correlation was found between plasma adiponectin and insulin sensitivity (r = 0.55, P < 0.01) and percent limb fat (r = 0.61, P < 0.01). AT mRNA of TNF-alpha, IL-6, and IL-8 was increased in AT of HALS subjects (P < 0.05), and both AT TNF-alpha mRNA and plasma TNF-alpha were negatively correlated to plasma adiponectin (P < 0.05). Finally, TNF-alpha was found in vitro to inhibit human AT adiponectin mRNA by 80% (P < 0.05). In conclusion, HALS patients have reduced levels of plasma adiponectin and adiponectin mRNA in AT. Increased cytokine mRNA in AT is hypothesized to exert an inhibitory effect on adiponectin gene expression and, consequently, to play a role in the reduced plasma adiponectin levels found in HALS patients.  相似文献   

14.
15.
Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT) sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively) were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy) (CR) dams. Body weight (BW), the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry) of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+) and NPY(+), suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+) and NPY(+). Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.  相似文献   

16.
Systemic inflammatory responsiveness was studied in normal human pregnancy and its specific inflammatory disorder, pre-eclampsia. Compared with nonpregnancy, monocytes were primed to produce more TNF-alpha throughout normal pregnancy, more IL-12p70 in the first and second trimesters, and more IL-18 in the first trimester only. Intracellular cytokine measurements (TNF-alpha and IL12p70) showed little change by comparison. IFN-gamma production was suppressed in all three trimesters. In pre-eclampsia, IL-18 secretion was increased. Secreted but not intracellular measures of TNF-alpha and IL-12p70 were also further enhanced compared with normal pregnancy. Inhibition of IFN-gamma production was lost and involved both CD56(+) NK and CD56(-) lymphocyte subsets. We determined whether circulating syncytiotrophoblast microparticles (STBM) could contribute to these inflammatory changes. Unbound STBM could be detected in normal pregnancy by the second trimester and increased significantly in the third. They were also bound in vivo to circulating monocytes. Women with pre-eclampsia had significantly more circulating free but not cell-bound STBMs. STBMs prepared by perfusion of normal placental lobules stimulated production of inflammatory cytokines (TNF-alpha, IL12p70, and IL-18 but not IFN-gamma) when cultured with PBMCs from healthy nonpregnant women. Inflammatory priming of PBMCs during pregnancy is confirmed and is established by the first trimester. It is associated with early inhibition of IFN-gamma production. The inflammatory response is enhanced in pre-eclampsia with loss of the IFN-gamma suppression. Circulating STBMs bind to monocytes and stimulate the production of inflammatory cytokines. It is concluded that they are potential contributors to altered systemic inflammatory responsiveness in pregnancy and pre-eclampsia.  相似文献   

17.
Fatty acids and expression of adipokines   总被引:6,自引:0,他引:6  
  相似文献   

18.
The widespread prevalence of obesity has lead to extensive research on white adipose tissue (WAT), which frequently uses the C57BL/6J mouse strain as a model. In many studies, results obtained in one WAT depot are often extrapolated to all WAT. However, functional differences among WAT depots are now becoming apparent. Thus, to identify the molecular mechanisms responsible for WAT depot-specific differences under "normal" conditions, four C57BL/6J mouse WAT depots (inguinal, mesenteric, epididymal, and retroperitoneal) were analyzed. Depot proteomic profiles, along with weights, protein contents, adipocyte sizes and oxidative stress were determined. Mesenteric WAT had almost twice the protein content of the other depots analyzed. Mean adipocyte size was highest in epididymal and lowest in mesenteric and inguinal depots. The proteome of inguinal WAT displayed low levels of enzymes involved in ATP generation, glucose and lipid metabolism, and antioxidant proteins. Higher levels of these proteins were observed in mesenteric and epididymal WAT, with variable levels in the retroperitoneal depot. Some of these proteins showed depot-specific correlations with plasma levels of insulin, leptin, and adiponectin. In agreement with the proteomic data, levels of the antioxidant protein heat shock protein β1 (HSPβ1) also were lower in inguinal WAT when analyzed by western blotting and immunohistochemistry. Also, lipid peroxidation products showed similar trends. Our results are consistent with lower triglyceride turnover and lower oxidative stress in inguinal than mesenteric and epididymal WAT. The observed WAT depot-specific differences provide clues as to the mechanisms leading to these depots' respective diverse functions.  相似文献   

19.
Resistin is a hormonal factor synthesised by adipocytes that was first thought to be related with the resistance to insulin in obesity, but whose function is not yet completely established. Here we have studied the ontogenic pattern of resistin mRNA expression in different white adipose tissue depots (WAT) – epididymal, inguinal, mesenteric and retroperitoneal – and in brown adipose tissue (BAT), as well as the circulating resistin levels, in rats of different ages (from the suckling period to one year of age). Resistin mRNA was determined by Northern blotting, and serum levels by enzyme immunoassay. In WAT, resistin expression remains almost constant with age, except in early development, where there is a peak of expression in the epididymal and retroperitoneal depots, and a decrease in the inguinal one, while the expression remains constant for the mesenteric depot. Moreover, there is a site-specific difference regarding resistin expression: all the depots express characteristic levels of mRNA, especially at the age of 2 months, the moment when resistin mRNA levels are significantly higher in the epididymal and the retroperitoneal than in the inguinal and mesenteric WAT and than in the BAT. The transient increased resistin expression in the epididymal and the retroperitoneal WAT at a period of time in which there is a change in diet (from milk to chow) suggests a common nutritional regulation of the resistin gene. Circulating resistin levels increase with age probably reflecting the increase in the body fat content.  相似文献   

20.
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号