首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B J Fuller  D E Pegg 《Cryobiology》1976,13(2):177-184
A method of estimating renal function by normothermic perfusion in vitro has been developed. In this paper, its application to the study of different methods of hypothermic renal preservation in the rabbit is described. Groups of kidneys were stored at 4 °C for 24 hr by surface cooling alone, by initial perfusion followed by storage (washout perfusion), and by continuous perfusion. Renal function was found to be severely compromised after surface cooling alone or after washout perfusion with an isotonic solution resembling extracellular fluid. Washout with a solution containing sufficient additional glucose to raise the osmolality to 400 mosm/kg gave greatly improved function, but increasing the concentration of magnesium from 2 to 72 mequiv/litre failed to confer any additional benefit, and increasing the concentration of potassium from 4 to 74 mequiv/ litre depressed function. Continuous perfusion with a solution containing albumin and dextran gave results that were inferior to the best washout method, but increasing the osmolality of the perfusate with glucose again resulted in a very significant improvement in function, which however was still inferior to the best washout method of storage. The further use of this test system to study methods of renal preservation is advocated.  相似文献   

2.
The success of liver transplantation has resulted in a dramatic organ shortage. In most transplant regions 20-30% of patients on the waiting list for liver transplantation die without receiving an organ transplant or are delisted for disease progression. One strategy to increase the donor pool is the utilization of marginal grafts, such as fatty livers, grafts from older donors, or donation after cardiac death (DCD). The current preservation technique of cold static storage is only poorly tolerated by marginal livers resulting in significant organ damage. In addition, cold static organ storage does not allow graft assessment or repair prior to transplantation.These shortcomings of cold static preservation have triggered an interest in warm perfused organ preservation to reduce cold ischemic injury, assess liver grafts during preservation, and explore the opportunity to repair marginal livers prior to transplantation. The optimal pressure and flow conditions, perfusion temperature, composition of the perfusion solution and the need for an oxygen carrier has been controversial in the past.In spite of promising results in several animal studies, the complexity and the costs have prevented a broader clinical application so far. Recently, with enhanced technology and a better understanding of liver physiology during ex vivo perfusion the outcome of warm liver perfusion has improved and consistently good results can be achieved.This paper will provide information about liver retrieval, storage techniques, and isolated liver perfusion in pigs. We will illustrate a) the requirements to ensure sufficient oxygen supply to the organ, b) technical considerations about the perfusion machine and the perfusion solution, and c) biochemical aspects of isolated organs.  相似文献   

3.
Several studies have reported that pancreatic ductal preservation greatly improved the islet yield and function after cold storage. However, these studies were devoid of appropriate controls, such as vascular perfusion, which is routinely performed to preserve organs in the clinical setting. In this study, we created a vascular perfusion model using inbred rats, and investigated the effect of ductal injection on the islet yield and function after cold storage. Rat pancreases after 10 h cold ischemia were classified as follows: without ductal/vascular perfusion; with ductal injection; with vascular perfusion; and with ductal/vascular perfusion. The islet yield, function, viability, release of inflammatory mediators, and pathological changes in the exocrine tissues were assessed in the Hanks' Balanced Salt Solution (HBSS) model. The islet yield was also assesed by introducing University of Wisconsin Solution (UWS) and Histidine-Tryptophan-Ketoglutarate solution (HTK), which are the standard clinical preservation solutions. In the HBSS model, ductal injection and vascular perfusion significantly improved the islet yield compared with the control group. However, ductal injection showed no additional effects on the islet yield, function, viability and suppressing the release of inflammatory mediators when vascular perfusion was performed. Although ductal injection significantly decreased the apoptosis of exocrine cells, no beneficial effect on vacuolation was observed. In contrast, vascular perfusion significantly suppressed vacuolation in the exocrine tissues. Likewise, in the UWS and HTK model, ductal injection and vascular perfusion improved the islet yield compared with the control group. Nevertheless, the combination group showed no additional effects. These data suggest that ductal injection has no additional effect on islet yield and function after cold storage in a vascular perfusion model. We propose that ductal injection can be an effective and simple alternative for vascular perfusion prior to pancreas harvest, but is not necessary in most cases, since vascular perfusion is routinely performed.  相似文献   

4.
The dynamics of the amino acid composition of the medium under conditions of adequate perfusion of the isolated organs of a dog (sternum, kidney and liver) was studied. It was found that after a 6-hour perfusion of the complex of organs the amount in the perfusion medium of such amino acids as histidine, lysine, alanine, considerably increased, whereas the amount of arginine, serine, aspartic acid, threonine with glutamine, isoleucine, proline, leucine and valine decreased as compared with their initial concentration. The dynamics of the amino acid medium composition during a 4-hour perfusion was studied in experiments with the isolated sternum. The concentration of alanine, lysine and histidine increased in the medium. At the same time there was seen a decrease in the concentration of serine, aspartic acid, isoleucine, tyrosine and phenyl-alanine.  相似文献   

5.

Background

Although non-heart-beating donors have the potential to increase the number of available organs, the livers are used very seldom because of the risk of primary non-function. There is evidence that machine perfusion is able to improve the preservation of marginal organs, and therefore we evaluated in our study the influence of the perfusate temperature during oxygenated machine perfusion on the graft quality.

Methods

Livers from male Wistar rats were harvested after 60-min warm ischemia induced by cardiac arrest. The portal vein was cannulated and the liver flushed with Lifor® (Lifeblood Medical, Inc.) organ preservation solution for oxygenated machine perfusion (MP) at 4, 12 or 21 °C. Other livers were flushed with HTK and stored at 4 °C by conventional cold storage (4 °C-CS). Furthermore two groups with either warm ischemic damage only or without any ischemic damage serve as control groups. After 6 h of either machine perfusion or cold storage all livers were normothermic reperfused with Krebs–Henseleit buffer, and functional as well as structural data were analyzed.

Results

Contrary to livers stored by static cold storage, machine perfused livers showed independently of the perfusate temperature a significantly decreased enzyme release of hepatic transaminases (ALT) during isolated reperfusion. Increasing the machine perfusion temperature to 21 °C resulted in a marked reduction of portal venous resistance and an increased bile production.

Conclusions

Oxygenated machine perfusion improves viability of livers after prolonged warm ischemic damage. Elevated perfusion temperature of 21 °C reconstitutes the hepatic functional capacity better than perfusion at 4 or 12 °C.  相似文献   

6.
The effect of 24-h cold storage of liver on nucleoside transport was investigated. Nucleoside transport was estimated under conditions when both known types of nucleoside transport, facilitated diffusion and Na+/nucleoside cotransport, were active and when one of these transport mechanisms was inhibited. The rate of adenosine transport was not decreased after long-term cold storage of the liver. Inhibition of one of the transport systems decreased the rate of adenosine uptake before and after preservation of the liver to about the same extent. The adenosine transport rate was maintained during long-term (100 min) liver perfusion ex vivo. Slight activation of energy-dependent transport in the beginning of reperfusion and the slower recovery of this transport after the second transition from Na+-free to Na+-containing perfusion are not regarded as physiologically important because they were observed after changing the ionic content of the extracellular medium. We conclude that the nucleoside transport systems in liver are quite well preserved after 24-h cold storage of the organ.  相似文献   

7.
8.
Cold transport of epididymides from genetically modified mice is an efficient alternative to the shipment of live animals between research facilities. Mouse sperm from epididymides cold-stored for short periods can maintain viability. We previously reported that cold storage of mouse epididymides in Lifor® perfusion medium prolonged sperm motility and fertilization potential and that the sperm efficiently fertilized oocytes when reduced glutathione was added to the fertilization medium. Cryopreservation usually results in decreased sperm viability; an optimized protocol for cold storage of epididymides plus sperm cryopreservation has yet to be established. Here, we examined the motility and fertilization potential of cryopreserved, thawed (frozen-thawed) sperm from previously cold-stored mouse epididymides. We also examined the protective effect of sphingosine-1-phosphate (S1P) on sperm viability when S1P was added to the preservation medium during cold storage. We assessed viability of frozen-thawed sperm from mouse epididymides that had been cold-transported domestically or internationally and investigated whether embryos fertilized in vitro with these sperm developed normally when implanted in pseudo-pregnant mice. Our results indicate that frozen-thawed sperm from epididymides cold-stored for up to 48 h maintained high fertilization potential. Fertilization potential was reduced after cold storage for 72 h, but not if S1P was included in the cold storage medium. Live pups were born normally to recipients after in vitro fertilization using frozen-thawed sperm from cold-transported epididymides. In summary, we demonstrate an improved protocol for cold-storage of epididymides that can facilitate transport of genetically engineered-mice and preserve sperm viability after cryopreservation.  相似文献   

9.
The aim of the present study was to evaluate the potential benefit of machine preservation with the Belzer MPS or HTK solution, compared to standard cold storage, after procurement of marginal livers from non-heart beating donors in an experimental pilot study. Livers from male Wistar rats (250-300 g bw) were harvested after 60 min of cardiac arrest, flushed via the portal vein and cold stored submerged in HTK for 24 h at 4 degrees C while other organs were subjected to oxygenated machine perfusion with HTK or Belzer's MPS at 5 ml/min at 4 degrees C. Cold perfusion of livers with the non-colloidal HTK was not compromised by the lack of oncotic agents and there was no rise in vascular resistance during the 24 h of machine preservation with HTK or the colloidal Belzer MPS. Viability of the livers was assessed after the cold preservation period by warm reperfusion in vitro. Oxygenated machine perfusion was found to significantly increase viability of the livers vs simple cold storage with respect to portal vascular resistance upon reperfusion, enzyme release as well as functional recovery of oxygen utilization or bile production. Moreover, tissue antigen expression of ICAM-1 or histocompatibility antigen class II could be markedly reduced by oxygenated perfusion preservation as compared to cold storage. It is concluded that predamaged organs should preferably be preserved by oxygenated machine perfusion thus minimizing functional alterations and immunogenicity of the graft. In this setup HTK appeared equally effective as Belzer's MPS for machine preservation.  相似文献   

10.
《Organogenesis》2013,9(3):105-112
With the successful testing of the immunosuppressive effects of cyclosporine in transplant patients in 1978, the field of organ transplants began an exponential growth. With that, the field of organ preservation became increasingly important as the need to increase preservation time and improve graft function became paramount. However, for every patient that receives a transplanted organ, there are 4 more on the waiting list. In addition, a patient dies from the lack of a transplant almost every 1½ hour. To alleviate this donor crisis, there is a need to expand the donor pool to marginal donor organs. The main reason these organs are underutilized is because the current method of static preservation, simple cold storage, is ineffective. This article will provide a general review of the methods of preservation including simple cold storage, hypothermic machine perfusion, normothermic machine perfusion, and oxygen persufflation. In addition, the article will provide a review of how these dynamic preservation methods have improved the recovery and preservation of marginal donor organs including donation after cardiac death and fatty livers.  相似文献   

11.
The metabolism of [4-(14)C]oestrone and of [6,7-(3)H(2)]oestrone sulphate was studied during cyclic perfusion and once-through perfusion of the isolated rat liver. The following results were obtained. 1. As shown by once-through perfusion, the two steroids are metabolized differently during the first passage through the organ. [4-(14)C]Oestrone was taken up by the liver and partly delivered as oestradiol-17beta and oestriol into the medium. After uptake of [6,7-(3)H(2)]oestrone sulphate, only oestrone, liberated by hydrolysis, was delivered into the medium; no oestradiol-17beta or oestriol could be detected in the medium after one passage through the organ. This indicates that intracellular oestrone, which was taken up as such, and oestrone, which derived from intracellular hydrolysis, may be metabolized in different compartments of the liver cell. 2. The results of the cyclic perfusion showed that intracellular oestrone is preferentially conjugated with glucuronic acid, and subsequently excreted into the bile. Intracellular oestrone sulphate is preferably reduced to oestradiol sulphate, thus indicating that oestrone sulphate is a better substrate for the 17beta-hydroxy steroid oxidoreductase than is oestrone. 3. Albumin-bound oestrone sulphate acts as a large reservoir, and in contrast with free oestrone is protected from enzyme attack by its strong binding to albumin. 4. Oestrone sulphate is partly converted into the hormonally active oestrone by liver tissue. This suggests that liver not only inactivates oestrogens, but also provides the organism with oestrone, which is subsequently readily taken up by other organs.  相似文献   

12.
With the successful testing of the immunosuppressive effects of cyclosporine in transplant patients in 1978, the field of organ transplants began an exponential growth. With that, the field of organ preservation became increasingly important as the need to increase preservation time and improve graft function became paramount. However, for every patient that receives a transplanted organ, there are four more on the waiting list. In addition, a patient dies from the lack of a transplant almost every 1½ hour. To alleviate this donor crisis, there is a need to expand the donor pool to marginal donor organs. The main reason these organs are underutilized is because the current method of static preservation, simple cold storage, is ineffective. This article will provide a general review of the methods of preservation including simple cold storage, hypothermic machine perfusion, normothermic machine perfusion, and oxygen persufflation. In addition, the article will provide a review of how these dynamic preservation methods have improved the recovery and preservation of marginal donor organs including Donation after Cardiac Death and Fatty livers.  相似文献   

13.
The output of proteins into bile was studied by using isolated perfused rat livers. Replacement of rat blood with defined perfusion media deprived the liver of rat serum proteins (albumin, immunoglobulin A) and resulted in a rapid decline in the amounts of these proteins in bile. When bovine serum albumin was incorporated into the perfusion medium it appeared in bile within 20 min and the amount in the bile was determined by the concentration of the protein in the perfusion medium. The use of a defined perfusion medium also deprived the livers of bile salts and the amounts of these, and of plasma-membrane enzymes [5'-nucleotidase (EC 3.1.3.5) and phosphodiesterase I], in bile declined rapidly. Introduction of micelle-forming bile salts (taurocholate or glycodeoxycholate) to the perfusion medium 80 min after liver isolation markedly increased the output of plasma-membrane enzymes but had no effect on the other proteins. The magnitude of this response was dependent on the bile salt used and its concentration in bile; there was little effect on plasma-membrane enzyme output until the critical micellar concentration of the bile salt had been exceeded in the bile. A bile salt analogue, taurodehydrocholate, which does not form micelles, did not produce the enhanced output of plasma-membrane enzymes. This work supports the view that the output of plasma-membrane enzymes in bile is a consequence of bile salt output and also provides evidence for mechanisms by which serum proteins enter the bile.  相似文献   

14.
The activity of glutathione-insulin transhydrogenase (glutathione:protein-disulfide oxidoreductase, EC 1.8.4.2) in the liver and kidneys of rats during the development of streptozotocin-induced diabetes has been studied. Following a single injection of streptozotocin, the transhydrogenase activity fell rapidly for 7-8 days and then gradually with time in both organs. In contrast to the control rats where approximately 25% of the enzyme is in a 'latent' state, nearly all the transhydrogenase activity in the diabetic liver appears to be in the free or functional form. The results are consistent with the hypothesis that both hepatic and renal glutathione-insulin transhydrogenase activity are under feedback control by circulating insulin. The possibility is discussed that the latent state may represent a storage form of the enzyme, which in insulin-insufficiency states is mobilized to the free or functional form for cell function.  相似文献   

15.
31P NMR spectroscopy has been used to evaluate the usefulness of verapamil, a calcium channel blocker, in preventing ischemic renal damage. Phosphorylated metabolites have been investigated before, during and after 48 hrs of hypothermic storage. The rapidity in adenosine triphosphate resynthesis and the phosphomonoesters and phosphodiesters levels after reperfusion at the end of the storage period (48 hrs), were significantly higher in verapamil-treated kidneys. Phosphomonoesters to inorganic phosphate ratio, during the storage period, is even higher. These findings suggest that verapamil may protect against ischemic renal damage and so it can be useful for renal preservation. Furthermore, it has been shown that 31P NMR spectroscopy puts into evidence the biochemical recovery and allows the assessment of the viability of organs.  相似文献   

16.
Fuller BJ  Lee CY 《Cryobiology》2007,54(2):129-145
Hypothermic perfusion preservation (HPP) was an integral step in the development of early clinical transplantation programmes, and considerable progress was made in understanding the basic principles underlying the technique. In subsequent years, the development of better preservation solutions for cold hypoxic storage, along with pragmatic choices made on grounds of costs and logistics, saw a fall in the application of HPP. More recently, the acute shortage of suitable organ donors and the inevitable pressure to use organs from sub-optimal (or expanded criteria) donors, has forced a re-evaluation of HPP, and the development of a new generation of HPP machines and associated perfusion solutions. This review sets out the historical development of HPP across the range of organs in which the method was originally investigated, describes the biological benefits and drawbacks associated with HPP, and sets out the most recent literature on the topic (including comments on the interest in use of higher temperatures in organ perfusion).  相似文献   

17.
The concentration of 1,5-anhydro-D-glucitol (AG) was determined in various organs and tissues of normal rats and rats rendered diabetic with streptozocin, using an AG-assay method in which AG was extracted after acid hydrolysis of the whole tissues. The organs and tissues examined included skin, muscle, liver, and kidney. The plasma of control rats contained 3-12 micrograms/ml of AG. In these rats, all the organs examined also contained AG at concentrations not much lower than that in the corresponding plasma, except for adipose tissues and testis, which have relatively small water spaces; the latter two contained AG at relatively low concentrations. In contrast, both the plasma and various organs of the diabetic rats contained only trace amounts of AG. The whole body perfusion of control rats depleted AG from most of the organs, the exception being spleen, the circulation system of which is known to have a structure that is difficult wash by means of perfusion. These observations indicated that AG readily diffused into the inter- and intra-cellular water spaces from the circulation. Accordingly, the plasma membranes of the cells in these organs were suggested to be permeable to AG.  相似文献   

18.
Research of the regulatory function of sucrose in storage protein breakdown was conducted on isolated embryo axes, excised cotyledons and whole seedlings of three lupine species grown in vitro on medium with 60 mM sucrose or without the sugar. Sucrose stimulated growth of yellow, white and Andean lupine isolated embryo axes and cotyledons but growth of seedlings was inhibited. Dry matter content was higher in sucrose-fed isolated organs and in seedling organs. Ultrastructure research revealed that lack of sucrose in the medium caused enhancement in storage protein breakdown. Protein deposits in cotyledons were smaller as well as soluble portion content in all studied organs was lower when there was no sucrose in the medium. In the same conditions, the activity of glutamate dehydrogenase was significantly higher. Increase in vacuolization of cells of white lupine root meristematic zone cells was observed and induction of autophagy in young carbohydrate-starved embryo axes is discussed.  相似文献   

19.
MicroRNA(miRNA)是一类小的(~20个核苷酸)、非编码的单链RNA分子,能够负调控基因表达,涉及多种信号途径和病理生理过程。缺血再灌注损伤(ischemia reperfusion injury,IRI)指组织器官缺血后重新获得血液的再灌注过程,灌注后组织、器官功能不能恢复,造成功能障碍和结构损伤的现象。IRI是影响多个组织与器官复杂的、系统的生理病理过程,并能够产生很多不可逆的损伤,导致级联的多器官功能障碍。现已发现多种miRNA在组织器官IRI中发生明显的变化,表明miRNA能够直接或者间接影响组织器官IRI。本文综述了miRNA的靶基因以及在心、脑、肝和肾IRI中的调控作用。miRNA 不仅参与了器官IR 损伤的病理生理过程,而且作为IR损伤的特定标志物在临床诊断和干预治疗中具有广阔的前景。  相似文献   

20.
Organ transplantation is the gold standard treatment for end-stage organ failure. Due to the severe shortage of transplantable organs, only a tiny fraction of patients may receive timely organ transplantation every year. Decellularization-recellularization technology using allogeneic and xenogeneic organs is currently conceived to be a promising solution to generate functionally transplantable organs in vitro. This approach, however, still faces tremendous technological challenges, one of them being the ability to evaluate and preserve the integrity of vascular architectures upon decellularization and cryostorage of the whole organ matrices so that the off-the-shelf organ grafts are available on demand for clinical applications. In the present study, we report a Micro-CT imaging method for evaluating the integrity of vasculature of the decellularized whole organ scaffolds with/without freezing/thawing. The method uses radiopaque Microfil perfusion and x-ray fluoroscopy to acquire high-resolution angiography of the organ matrix. The whole rat kidney is decellularized using a new multistep perfusion protocol with the combined use of Triton X-100 and DNase. The decellularized kidney matrix is then cryopreserved after the pretreatment with different cryoprotectant solutions. The reconstructed tomographic images from Micro-CT confirm various structural alterations in the vasculature of the whole decellularized kidney matrix with/without frozen storage. The freezing damage to the vascular architectures can be reduced by perfusing cryoprotectant solutions into the whole kidney matrix. Ice-free cryopreservation with the vitrification solution VS83 can successfully preserve the integrity of the whole kidney matrix's vasculature after frozen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号