首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of polar and non-polar moieties into cerebral cortex (CC) and cerebellum (CRBL) phospholipids of adult (3.5-month-old) and aged (21.5-month-old) rats was studied in a minced tissue suspension. The biosynthesis of acidic phospholipids through [3H]glycerol appears to be slightly increased with respect to that of zwitterionic or neutral lipids in CC of aged rats with respect to adult rats. On the contrary, the synthesis of phosphatidylcholine (PC) from [3H]choline was inhibited. However, the incorporation of [14C]serine into phosphatidylserine (PS) was higher in CC and CRBL in aged rats with respect to adult rats. The synthesis of phosphatidylethanolamine (PE) from PS was not modified during aging. Saturated ([3H]palmitic) and polyunsaturated ([3H]arachidonic) acids were incorporated successfully by adult and aged brain lipids. In addition [3H]palmitic, [3H]oleic and [3H]arachidonic acid were employed as glycerolipid precursors in brain homogenate from aged (28.5 month old) and adult (3.5 month old) rats. [3H]oleic acid incorporation into neutral lipids (NL) and [3H]arachidonic acid incorporation into PC, PE and phosphatidylinositol (PI) were increased in aged rats with respect to adult rats. Present results show the ability and avidity of aged brain tissue in vitro to incorporate unsaturated fatty acids when they are supplied exogenously. They also suggest a different handling of choline and serine by base exchange enzyme activities to synthesize PC and PS during aging.  相似文献   

2.
Abstract— [Me-3H] Choline was injected intracerebrally into male rats and the brains immediately removed by particular procedures at regular intervals over the first 1200 s. The incorporation of radioactivity into brain phosphorylcholine, CDP-choline and phosphatidylcholines was examined and quantitated, in order to investigate the relative roles of net synthesis and base-exchange reactions for choline incorporation into lipid. The molecular subspecies of phosphatidylcholines were also examined after isotope administration. Phosphorylcholine, CDP-choline and phosphatidylcholines all became labelled as early as 5 s after the administration of labelled choline. The time course of incorporation of choline into brain lipid is biphasic with two flex points at about 20 and 120 s from the injection. The specific radioactivity of different phosphatidylcholines appears to be different at early and later intervals from injection. The suggestion is made that the base-exchange pathway for choline incorporation into lipid might be operative in vivo in early periods after administration.  相似文献   

3.
[3H]Ethanolamine and [32P]orthophosphate were injected intraventricularly into adult female rats. At varying time intervals after the injection (1–10 min), the animals were killed by means of a microwave apparatus, and phosphorylethanolamine and ethanolamine phosphoglycerides were extracted from the brains and counted after separation. The kinetic constants for phosphorylethanolamine incorporation into ethanolamine lipids were calculated both from3H data and from32P data. From our results, it seems that base exchange reactions for ethanolamine incorporation into ethanolamine lipids are a pathway active in brainin vivo.  相似文献   

4.
神经节苷脂GM3诱导人单核样白血病J6-2细胞沿单核/巨噬细胞途径分化.在GM3诱导分化同时,J6-2细胞磷脂代谢发生了显著变化.采用((32)P)Pi、[GH3-3H]胆碱和[CH3-3H]SAM参入实验对GM3影响J6-2细胞PC代谢的机制进行了初步的探讨.GM3促进[(32)P]Pi参入J6-2细胞PC;抑制[CH3-3H]胆碱参入PC及PC合成的前体磷酸胆碱及CDP-胆碱;GM3促进[CH3-3H]SAM参入PC,但抑制[CH3-3H]SAM参入PC合成的前体胆碱、磷酸胆碱和CDP-胆碱.上述结果提示,GM3抑制J6-2细胞PC合成的CDP-胆碱途径,促进PC合成的PE甲基化途径.  相似文献   

5.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

6.
Abstract— Seventeen day old rats were injected intraocularly with a phospholipid precursor, [32P]phosphate, and a glycoprotein precursor, [3H]fucose. Animals were killed between 1 h and 21 days later, and structures of the visual pathway (retina, optic nerve, optic tract, lateral geniculate body, and superior colliculus) were dissected. Radioactivity in phospholipids ([32P] in solvent-extracted material) and in glycoproteins ([3H] in solvent-extracted residue) was determined. Incorporation of [3H]fucose into retinal glycoproteins peaked at 6–8 h. Labelled glycoproteins were present in superior colliculus by 2h after injection, indicating a rapid rate of transport; maximal labelling was at 8–10 h after injection. Incorporation of [32P]phosphate into retinal phospholipids peaked at 1 day after injection. Phospholipids were also rapidly transported since label was present in the superior colliculus by 3 h after injection: however, maximal labelling did not occur until 5–6 days. These results indicate that newly synthesized phospholipids enter a preexisting pool, part of which is later committed to transport at a rapid rate. Transported phospholipids were catabolized at the nerve endings with a maximum half-life of several days; there was minimal recycling of precursor label. Lipids were fractionated by thin-layer chromatography, and radioactivity in individual phospholipid classes determined. Choline and ethanolamine phosphoglycerides were the major transported phospholipids, together accounting for approx 85% of the total transported lipid radioactivity. At early time points, the ratio of radioactivity in choline phosphoglycerides to that in ethanolamine phosphoglycerides increased in structures progressively removed from the site of synthesis (retina) but by 2 days approached a constant value. In each structure, choline phosphoglyceride-ethanolamine phosphoglyceride radioactivity ratios decreased with time, rapidly at first, but plateaued by 2 days. These results indicate that choline phosphoglycerides are committed to transport sooner than ethanolamine phosphoglycerides. Some experiments were also conducted using [2-3H]glycerol as a phospholipid precursor. Results concerning incorporation of this precursor into individual phospholipid classes and their subsequent axonal transport were comparable to those obtained using [32P]phosphate, with the following exceptions: (a) incorporation of [2-3H]glycerol into retinal phospholipids was relatively rapid (near-maximal levels at 1 h after injection) although transport to the superior colliculus showed an extended time course very similar to [32P]-labelled lipids; (b) [2-3H]glycerol was somewhat less efficient than [32P]phosphate in labelling lipids committed to transport relative to labelling those which remained in the retina; and (c) [2-3H]glycerol did not label plasmalogens.  相似文献   

7.
It is well known that platelets readily incorporate radioactive glycerol, but not radioactive phosphate into phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vitro, thus not in accordance with de novo synthesis according to the Kennedy pathway. In attempts to understand the reason for the discrepancy, gel-filtered platelets were incubated simultaneously with [32P]Pi and [3H]glycerol, and the specific and relative radioactivities of products and intermediates were determined. Both precursors were incorporated into phosphatidylinositol (PI) with a 32P/3H ratio similar to that in glycerol 3-phosphate (in accordance with the Kennedy pathway). However, PC and PE obtained a much lower ratio. The specific 32P radioactivity in phosphorylcholine was similar to that of the gamma-phosphoryl of ATP and 650-times higher than that of PC. The specific 32P radioactivity of phosphorylethanolamine was 20-times less than that of phosphorylcholine. Both mass and 32P labelling of CDP-choline were below the detection limits. It is concluded that the incorporation of [32P]Pi into PC via phosphorylcholine is insignificant while the preferential incorporation of [3H]glycerol could be explained by exchange of diacyl[3H]glycerol in the reversible choline phosphotransferase (CDP-choline: 1,2-diacylglycerol cholinephosphotransferase) reaction. The same mechanism would explain the preferential incorporation of 3H over 32P into PE, although dilution of 32P at the phosphorylethanolamine stage would account for part of the feeble 32P incorporation. Although other mechanisms are also possible, our results clearly show that the appearance of [3H]glycerol in PC and PE is not a reliable method of monitoring de novo synthesis of these phospholipids.  相似文献   

8.
The metabolism of [Me-14C]choline in the brain of the rat in vivo   总被引:9,自引:7,他引:2       下载免费PDF全文
[Me-(14)C]Choline was injected intracerebrally into the adult rat, and its uptake into the lipids and their water-soluble precursors in brain was studied. The radioactivity could be detected only in the choline-containing lipids and was confined to the base choline. The results indicated that initial phosphorylation of the free choline followed by the formation of CDP-choline and the subsequent transfer of the phosphorylcholine to a diglyceride is one of the principal routes by which choline lipids in brain are formed. Further evidence for this was obtained in experiments in which either phosphoryl[Me-(14)C]choline or [(32)P]orthophosphate was injected and the radioactivity in the choline-containing water-soluble and lipidbound components studied.  相似文献   

9.
Choline kinase (EC 2.7.1.32; ATP: choline phosphotransferase) was purified 200-fold from an extract of acetone powder of rabbit brain by a combination of acid precipitation, ammonium sulphate precipitation, DEAE cellulose chromatography, and ultrafiltration. Maximal activity of 243 nmol of phosphorylcholine synthesized. min?1 mg?l of protein occurred at pH 9.5–10.0 in the presence of 10 mm MgS04, 10 mm choline and 0.005% (w/v) bovine serum albumin. 2-Aminoethanol, 2-methylaminoethanol, and 2-dimethylaminoethanol were also phosphorlyated by the enzyme preparation. The enzyme quantitatively converted low concentrations of choline (2.5–50 μm ) to phosphorylcholine [32P] in the presence of ATP [y32P], and may, therefore, be used to measure small amounts of choline acetylcholine. There were two Km values for choline at pH 9.5; 32 μm and 0.31 mm . At pH 7.4, the higher Km was not observed and enzyme activity was maximal with 0.1 mm choline. The Km for ATP was 1.1 mm . Enzyme activity was inhibited by ATP (20 mm ), AMP, ADP, cytidine diphosphocholine (1 or 10 mm ), and activated by choline esters (1.0 mm ), NaCl or KCl(200 mm ).  相似文献   

10.
The effects of phenylpyruvate and hyperphenylalaninemia on the incorporation of [6-3H]glucose into lipids, proteins and nucleic acids were examined in differentiating and adult rat brain. Foetal brain was most sensitive to inhibition by phenylpyruvate in vitro, with significant effects occurring at 2·5 mM for labelling of lipids and proteins and at 5 mM for labelling RNA and DNA. Older age groups were less affected, and cortical slices from adult brain were slightly or not at all affected by phenylpyruvate. The inhibition by phenylpyruvate of incorporation of [6-3H]glucose into nucleic acids, proteins, and lipids could be further distinguished by the reversibility of the effect on nucleic acid and protein synthesis at high levels of glucose and the irreversibility of the effect on lipid synthesis. Lipid synthesis was most sensitive to inhibition by phenylpyruvate at the stage of fatty acid synthesis, with lesser effect on the formation of glyceride glycerol. Exposure in utero of the foetal brain to maternal hyperphenylalaninemia resulted in reduction of 26–38 per cent in the subsequent incorporation in vitro of [6-3H]glucose into lipids, proteins, RNA and DNA of brain slices from foetal animals. Feeding hyperphenylalaninemic pregnant rats a high-glucose diet significantly protected the foetal brain from the neurotoxicity accompanying the hyperphenylalanemia.  相似文献   

11.
The effects of calmodulin antagonists on the secretion of lysosomal enzyme and lipid metabolism in guinea-pig peritoneal macrophages were studied. Calmodulin antagonists, such as trifluoperazine, dibucaine and quinacrine, inhibited the secretion of N-acetyl-β-d-glucosaminidase from cytochalasin B-treated macrophages when the macrophages were stimulated by the chemotactic peptide, formylmethionyl-leucyl-phenylalanine (f Met-Leu-Phe) or the Ca2+ ionophore A23187. The effect of calmodulin antagonists on the incorporation of [32P]Pi or [3H]glycerol into glycerolipids as well as on the redistribution of [14C]glycerol or [3H]arachidonic acid in [14C]glycerol- or [3H]arachidonic acid-prelabelled lipids were examined. Trifluoperazine, dibucaine or quinacrine stimulated [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) without significant effect on the labelling of phosphatidylethanolamine (PtdEtn), phosphatidylserine (PtdSer), lysophosphatidylcholine (lyso-PtdCho) and lysophosphatidylethanolamine (lyso-PtdEtn). The incorporation of [32P]Pi into phosphatidylcholine (PtdCho) was, on the contrary, inhibited. When calmodulin antagonists were added to macrophages stimulated by fMet-Leu-Phe, [32P]Pi incorporation into PtdIns and PtdA was synergistically increased compared with that induced only by calmodulin antagonists. Trifluoperazine inhibited the incorporation of [3H]glycerol into PtdCho, triacylglycerol and PtdEtn. Also in this case, the incorporation of [3H]glycerol into PtdA and PtdIns was greatly enhanced. But [3H]glycerol incorporation into PtdSer, lyso-PtdEtn and lyso-PtdCho was not affected by the drug. On the other hand, diacylglycerol labelling with [3H]glycerol was maximally activated by 10μm-trifluoperazine and levelled off with the increasing concentration. When the effect of calmodulin antagonists on the redistribution of [14C]glycerol among lipids was examined in pulse-chase experiments, no significant effect on [14C]glycerol redistribution in PtdEtn, PtdCho, PtdIns, PtdSer, PtdA and tri- and di-acylglycerol could be detected. When macrophages prelabelled with [3H]arachidonic acid were treated with trifluoperazine, dibucaine or quinacrine, the [3H]arachidonic acid moiety in PtdEtn and PtdCho was decreased and that in PtdA was increased. The formation of [arachidonate-3H]diacylglycerol and non-esterified [3H]-arachidonic acid was also enhanced, but the increase in [3H]arachidonic acid was only observed at concentrations between 1 and 50μm. [Arachidonate-3H]PtdIns was not significantly affected. The activated formation of [arachidonate-3H]PtdA, diacylglycerol and non-esterified arachidonic acid by these drugs was synergistically enhanced in the presence of fMet-Leu-Phe.  相似文献   

12.
Oligodendrocytes were isolated from adult pig brain and cultivated for 18–24 days. [14C]acetate, [3H]galactose or [35S]sulfate were added to the medium for an additional 24 h. Lipids were extracted and separated by high-performance thin-layer chromatography. The labeled lipids were studied by fluorography and scintillation counting. [14C]acetate was incorporated in decreasing order into neutral lipids, phosphatidylcholine, ethanolamine phosphatides, galactocerebrosides, phosphatidylinositol, phosphatidylserine, sulfatides and sphingomyelin. From the [14C]acetate incorporated into ethanolamine and choline phosphatides, 71.6 and 14.8%, respectively, were found in plasmalogens. Among neutral lipids, [14C]acetate labeled not only cholesterol but also large amounts of triglycerides. No cholesterol esters were synthesized. [3H]galactose primarily labeled galactocerebrosides, sulfatides, and monogalactosyl diglyceride. [35S]sulfate incorporation was restricted to sulfatides. Together with our previous results concerning proteins, these data show that: (1) oligodendrocytes remain highly differentiated in long-term cultures; (2) they are able to synthesize the major components of myelin; (3) they synthesize surprisingly high amounts of triglycerides and of monogalactosyl diglyceride, a marker for myelination.  相似文献   

13.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

14.
Polar lipids were extracted from suspension-cultured tomato (Lycopersicon esculentum Mill.) cells and analyzed by thin layer chromatography. Four major inositol-containing compounds were found, and incorporation of [32P]orthosphosphate, [2-3H]glycerol, and myo-[2-3H]inositol was studied. Results showed that phosphatidylinositol-monophosphate is the phospholipid in these cells displaying the most rapid incorporation of [32P]orthophosphate. We suggest that the tracer is incorporated primarily into the phosphomonoester group. Two inositol-containing lipids showed chromatographic behavior similar to phosphatidylinositol-4,5-bisphosphate when using standard thin layer chromatography techniques. The labeling pattern of these compounds, however, reveals that it is unlikely that either of these is identical to phosphatidylinositol-4,5-bisphosphate. Should phosphatidylinositol-bisphosphate be present in suspension cultured plant cells, our data indicate chemical abundancies substantially lower than previously reported.  相似文献   

15.
The main objective of these studies was to determine whether adenosine inhibits choline kinase in rat striata, leading to a decreased incorporation of choline into phosphorylcholine, a mechanism that may mediate seizure-induced increases in the levels of free choline in brain. Incubation of particulate and soluble fractions of striatal synaptosomes with adenosine or its metabolically stable analogues significantly inhibited enzyme activity. The inhibition was noncompetitive versus choline and competitive versus MgATP. Inhibitor constants for adenosine, 2-chloroadenosine, and 2',5'-dideoxyadenosine at the MgATP site were 94, 49, and 207 microM, respectively; these values were less than the Michaelis constant for MgATP (340 microM). To determine whether adenosine altered the phosphorylation of choline in an intact preparation, synaptosomes were incubated with [3H]choline in the presence or absence of adenosine or its analogues and the amount of [3H]-phosphorylcholine formed from the [3H]choline taken up was measured. All compounds tested significantly reduced the synthesis of [3H]phosphorylcholine. Results suggest that following seizures or hypoxia, when levels of adenosine increase and the concentration of ATP decreases, inhibition of choline phosphorylation may be manifest, resulting in increased levels of free choline in brain.  相似文献   

16.
Studies on the origin of choline in the brain of the rat   总被引:15,自引:5,他引:10       下载免费PDF全文
1. Labelled precursors of choline, namely ethanolamine, dimethylaminoethanol and methionine and also labelled choline itself were injected intraperitoneally into the adult female rat and the incorporation into lipids and water-soluble fractions was traced in liver, blood and brain. 2. No significant free choline was detected and no labelling of the phosphorylcholine of blood. There was, however, considerable labelling of the phosphorylcholine of brain and liver. 3. After intracerebral injection, [1,2-(14)C]dimethylaminoethanol was rapidly phosphorylated and converted into phosphatidyldimethylaminoethanol, presumably by the cytidine pathway. 4. In view of the pattern of labelling and the amount of phosphatidylcholine in the tissues examined, it seems highly likely that choline is transported to the brain by the blood in a lipid-bound form.  相似文献   

17.
The incorporation of radioactivity from [1,2-34C]choline, [1,2-34C]ethanolamine, [3-14C]serine and [methyl-14C]methionine into lipids was studied in growing cultures of Crithidia fasciculata. Lecithin was formed both from choline and by the methylation of phosphatidylethanolamine. Mono- and dimethylphosphatidylethanolamines were present in no more than trace amounts. Growth of the protozoa in media containing choline (1 mM) did not decrease synthesis by the methylation pathway. Phosphatidylethanolamine was formed from ethanolamine. Radioactivity from serine also was present in both phosphatidylethanolamine and lecithin; however, the presumed intermediate, phosphatidylserine, could not be detected.  相似文献   

18.
Abstract— Synthesis of phosphatidylcholine, phosphatidylinositol and palmityl carnitine in synaptosomes isolated from rat brain was investigated and compared with the synthesis of these compounds in microsomes and mitochondria. Electron microscopic and marker enzyme studies showed the contaminants in the synaptosomal preparation to consist of a few microsomes and almost no free mitochondria. In synaptosomes, addition of 1,2-diglyceride exerted no effect on the incorporation of [14C]choline into phosphatidylcholine or on the incorporation of [3H]myo-inositol into phosphatidylinositol, but it stimulated the incorporation of CDP[1,2-14C]choline into phosphatidylcholine by more than 50 per cent. The incorporation of the latter in intact synaptosomes, lysed synaptosomes and purified mitochondria was 15-6, 27 and 9-9 per cent, respectively, of that in the microsomes. The incorporation of [3H]myo-inositol into the phosphatidylinositol of synaptosomes and purified mitochondria was 15-8 and 11-1 per cent, respectively, of that in the microsomes. Maximal incorporation of [3H]myo-inositol occurred at pH 7–5 in a medium containing Mg2+ and CTP; it was linear with time and protein concentration and was inhibited by 1 mM Ca2 + but unaffected by the presence of ATP. This incorporation of myo-inositol appeared to occur through the reversal of the CDP-diglyceride: inositol transferase reaction. The demonstration of carnitine palmityl transferase in synaptosomes indicated that, as in mitochondrial and erythrocyte membranes, fatty acids can be transported across the synaptosomal membrane. In contrast to mitochondria where maximal incorporation of [14C]carnitine into palmityl carnitine was observed after 20 min of incubation, the incorporation in synaptosomes increased as a function of time up to 60 min of incubation. We conclude that synaptosomes can carry on de novo synthesis of lipids, although at a limited rate. From the present data we cannot state with certainty how much of this synthesis is attributable to membranes originating from the endoplasmic reticulum.  相似文献   

19.
Brain slices obtained from the forebrains of adult female rats were incubated with [32P]phosphate and [3H]glycerol for 60 min, and lipids extracted and analyzed by TLC. The 32P in brain slice lipids was primarily in polyphosphoinositides, phosphatidylinositol (PI), and phosphatidate (PA). Distribution of the 32P-labeled lipids in isolated myelin was biased toward PA, 38%, relative to 16% in whole tissue slice lipids. About 33% of the total labeled PA in brain slices was accounted for by that in myelin. On a per milligram protein basis, PA labeling in myelin is about 2.5-fold greater than that of whole brain slice. Since incorporation of [3H]glycerol (indicative of synthesis by the de novo synthetic pathway) was at very low levels, we conclude that [32P]phosphate entered into myelin PA primarily through a pathway involving phospholipase C activity. Much of the production of PA relates to hydrolysis of phosphoinositides, yielding diacylglycerol which is then phosphorylated within myelin. The distribution of label among the inositol-containing lipids suggests that only a fraction of the myelin polyphosphoinositides serve as substrate for rapid diglyceride production. In the presence of 10 mM acetylcholine (ACh) there was a 20-60% stimulation of [32P]phosphate incorporation into PA and PI of brain slice lipids and purified myelin. Stimulation by ACh was blocked by atropine. The observed increase in the 32P/3H ratio, relative to controls, indicated that for both total lipids and myelin lipids there was selective stimulation of a phospholipase C-dependent cycle relative to de novo biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
—1. Effects of the administration of phenylalanine to rats on incorporation in vivo or in vitro of [U-14C]glucose into cerebral lipids were studied during the first 5–10 days of postnatal development. In addition, the effects of added phenylalanine and its deaminated metabolites on incorporation of [U-14C]glucose by homogenates into lipids of developing rat brain were investigated. Hyperphenylalaninaemia reduced incorporation both in vivo and in vitro of [U-14C]glucose into cerebral lipids. 2. Phenylalanine or tyrosine added in vitro at concentrations equivalent to those in the brain of the hyperphenylalaninaemic rat (0-1 μmole/ml incubation medium) did not inhibit incorporation of [U-14C)glucose into lipids, although at much higher concentrations of phenylalanine (36 μumoles/ml incubation medium) slight inhibition (10 per cent) of incorporation of [U-14C]glucose into lipids was observed. 3. In contrast, the deaminated metabolites in general exerted greater inhibitory effects at lower concentrations. Phenyllactic acid, in comparison to phenylpyruvic and phenyl-acetic acid, was the most potent inhibitor of the incorporation in vitro of [U-14C]glucose into cerebral lipids. These results indicated that these metabolites of phenylalanine were the more potent inhibitors of cerebral lipid metabolism in immature animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号