首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
骨组织工程天然衍生细胞外基质材料   总被引:10,自引:0,他引:10  
细胞外基质材料的开发是骨组织工程的重要组成部分,目前,在骨组织工程中应用较多的基质材料可分为天然衍生材料、人工合成材料以及这两种材料的复合材料。介绍了各种天然衍生骨材料如煅烧骨、脱钙骨基质、脱蛋白骨基质、重组合异种骨基质和天然高分子材料如胶原、纤维蛋白、几丁质、藻酸盐及其衍生物以及珊瑚衍生骨在骨组织工程中的应用,展望了骨组织工程细胞外基质材料的未来发展方向,认为未来的理想基质材料应该是集各种材料的优点于一身,能够充分适应体内各种生理环境并能采用智能化的加工方式进行大批量生产的生物仿生材料。  相似文献   

2.
骨组织工程中的复合支架研究是当今的热点之一,珍珠层粉作为一种骨修复替代材料,具有诱导成骨作用的有机基质以及合适的降解性能。因此珍珠层粉复合支架有望成为理想的骨组织工程修复材料,现就其生物学性能进行综述。  相似文献   

3.
近年来,组织工程技术飞速发展,将种子细胞与支架材料相复合的骨组织工程研究已成为热点,并日趋走向成熟。这一全新的治疗方案将成为解决临床上各种原因造成的骨组织缺损的最有效途径之一。骨组织工程技术包括种子细胞、支架材料和生长因子三个方面。其中,BMSCs因具有多向分化能力、强大的增殖能力以及低免疫源性被认为是最理想的种子细胞,而支架材料的种类有很多种,目前对支架材料的选择也尚有分歧。如何找到理想的支架材料是骨组织工程研究中亟待解决的重要问题。本文就组织工程中与骨髓间充质干细胞(BMSCs)相复合的各类支架材料的研究现状进行综述,这些支架材料的研究将为骨组织工程支架材料的选择提供有效依据。  相似文献   

4.
天然水凝胶是指原材料来自于天然生物材料的水凝胶。由于这种天然的聚合物含有构成生物体的天然成分,与天然组织具有生物学和化学相似性,而受到特别关注。天然水凝胶由于其与细胞外基质高度的相似性被认为是骨组织工程中优良的仿生基质材料。而针对天然水凝胶机械性能差、成骨诱导性能弱等缺陷,通常需要对天然水凝胶进行改性、引入其他材料或生物活性因子,以此来获得更适用于骨组织工程支架材料。对近年来基于天然水凝胶的生物材料在骨组织工程的应用,与其不同的应用形式(可注射水凝胶、多孔水凝胶支架、3D生物打印水凝胶支架等)进行了概述,以期对这类基于天然水凝胶的生物材料在未来骨组织工程中的应用提供参考。  相似文献   

5.
周茜 《现代生物医学进展》2014,14(23):4582-4585
计算机辅助骨组织工程作为一种新的研究领域可以帮助进行复杂的个性化支架的建模,设计和制造,使支架材料达到理想的物理,化学和生物学性能。本文从骨组织工程支架材料的设计路线出发,综述了计算机辅助技术在骨组织工程支架材料上面的应用,并着重探讨了计算机辅助组织建模、骨组织工程支架的设计和快速成型制造技术的最新进展。  相似文献   

6.
藻酸盐三维细胞培养在骨组织工程中应用的研究进展   总被引:1,自引:0,他引:1  
目的综述藻酸盐三维细胞培养系统在骨组织工程中的应用研究进展。方法广泛查阅近年来有关藻酸盐三维细胞培养系统在骨组织工程应用研究的文献进行综述。结果藻酸盐具有良好的生物相容性,无毒、对宿主无免疫原性和生物可降解等独特的物理、化学和生物特性,藻酸盐三维细胞培养系统仍然是迄今理想的骨组织工程支架材料之一。结论藻酸盐三维细胞培养系统不仅将广泛应用于生命科学基础研究,作为一种理想的组织移植的支架材料,有望逐步走向临床应用。  相似文献   

7.
支架材料作为骨组织工程的关键三要素之一具有重要的作用。壳聚糖是唯一带正电的天然碱性多糖,其具有良好的生物相容性、生物可降解性、固有的抗菌性以及促进成骨细胞增殖、促成骨分化等优点,在骨组织工程中被广泛用来制备骨组织工程支架材料。但单纯壳聚糖制备的支架材料机械性能较差、生物响应性较低。因此,近些年来基于壳聚糖的复合支架备受人们关注。目前,人们已经研发出了不同类型的壳聚糖基复合材料,包含与无机相、有机相以及多相复合的支架材料等,并对其生物学性能进行广泛研究,主要包括支架材料在细胞体外培养中的作用、支架材料体内修复不同骨缺损的效果和模式等方面。本文对此进行综述,并对今后的研究趋势进行了初步的探讨  相似文献   

8.
聚肽是20种α-氨基酸中的一种或者几种氨基酸通过酰胺键(肽键)联成的长链分子,此外还包含有其它非肽链结构的组成成分,具有和蛋白质类似的二级结构.由于其独特的结构和性能,近年来在组织工程领域聚肽被广泛地研究和应用,主要被用作生长因子、支架材料表面改性物以及支架材料.从以上3个方面介绍了近年来聚肽在骨组织工程领域的研究和应用情况,并对聚肽在骨组织工程研究领域的应用前景进行了展望.  相似文献   

9.
随着骨科学的发展,骨组织缺损治疗这一难题尤显突出,急需一种更为有效的疗法.骨组织工程是采用组织工程学的原理与方法,研制具有修复骨缺损能力的骨替代物的一门科学.经过20余年的发展,骨组织工程最终确立了将骨再生相关分子、成骨活性细胞与支架材料三者复合来构建组织工程骨的基本模式.支架材料是骨组织工程的核心,而作为支架材料之一的脱细胞骨基质(Acellular bone extracellular matrix,ABECM),近年来发展迅猛,展示出强大的生命力及临床应用前景.并且ABECM已有应用于临床试验的报道.本文将就此做一综述.  相似文献   

10.
目的研究生物材料交联明胶-聚羟基丁酸酯膜与骨髓基质细胞的生物相容性,探讨新型材料在骨组织工程中的应用前景。方法体外培养兔骨髓基质细胞,分别接种于G-PHB(交联明胶-聚羟基丁酸酯)、PHB(聚羟基丁酸酯)和G(交联明胶)材料膜片。采用MTT法检测细胞增殖活性,体视学方法检测细胞粘附能力,荧光双染法检测细胞完整性,扫描电镜观察细胞-材料界面。结果MTT检测发现G-PHB组增殖活性最强,而且表现为最佳的细胞粘附特性,与对照组比较差异有显著性意义。各组细胞完整性分析没有发现显著性差异。扫描电镜观察显示,G-PHB组细胞粘附及铺展良好,优于其他各组。结论交联后的生物降解膜材料G-PHB与BMSCs细胞的体外相容性明显优于单纯膜材料PHB和明胶,在骨组织工程学领域具有良好的研究价值和应用潜力。  相似文献   

11.
Bone tissue defects cause a significant socioeconomic problem, and bone is the most frequently transplanted tissue beside blood. Autografting is considered the gold standard treatment for bone defects, but its utility is limited due to donor site morbidity. Hence much research has focused on bone tissue engineering as a promising alternative method for repair of bone defects. Marrow stromal cells (MSCs) are considered to be potential cell sources for bone tissue engineering. In bone tissue engineering using MSCs, bone is formed through intramembranous and endochondral ossification in response to osteogenic inducers. Angiogenesis is a complex process mediated by multiple growth factors and is crucial for bone regeneration. Vascular endothelial growth factor plays important roles in bone tissue regeneration by promoting the migration and differentiation of osteoblasts, and by inducing angiogenesis. Scaffold materials used for bone tissue engineering include natural components of bone, such as calcium phosphate and collagen I, and biodegradable polymers such as poly(lactide-coglycolide) However, ideal scaffolds for bone tissue engineering have yet to be found. Bone tissue engineering has been successfully used to treat bone defects in several human clinical trials to regenerate bone defects. Through investigation of MSC biology and the development of novel scaffolds, we will be able to develop advanced bone tissue engineering techniques in the future.  相似文献   

12.
具有三维结构的支架材料是组织工程的核心内容之一。现有组织工程支架可分为天然生物材料、合成有机材料和无机材料三类。支架材料近年来研究十分活跃,不仅在组织工程的最早产品人工皮肤领域进行了更为完善的研究和开发,同时在诸如人工骨、软骨、神经、血管、皮肤、肝、脾、肾、膀胱等方面进行了大量研究和探索。与普通组织工程支架需要预先制备并在体外成型不同,近年来在骨和软骨组织工程实践中兴起的可注射支架具有许多优势,是未来组织工程支架发展的重要方向之一。  相似文献   

13.
In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application.  相似文献   

14.
脂肪间质干细胞,是脂肪组织中一类多能性干细胞。其在体外特定的培养条件下,可诱导分化形成脂肪、骨、软骨、肌肉等组织类型细胞。人体脂肪组织十分丰富,用其分离脂肪间质干细胞可避免分离胚胎干细胞所面临的道德伦理问题和获取极少量骨髓分离骨髓间质干细胞时给供者带来极大痛苦等。因此脂肪间质干细胞可作为组织再生工程的干细胞理想的替代资源。本文重点论述脂肪间质干细胞的研究进展,并探讨其临床应用前景。  相似文献   

15.
Techniques of bone reconstructive surgery are largely based on conventional, non-cell-based therapies that rely on the use of durable materials from outside the patient's body. In contrast to conventional materials, bone tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve bone tissue function. Bone tissue engineering has led to great expectations for clinical surgery or various diseases that cannot be solved with traditional devices. For example, critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of bone tissue engineering is to apply engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. The total market for bone tissue regeneration and repair was valued at $1.1 billion in 2007 and is projected to increase to nearly $1.6 billion by 2014.Usually, temporary biomimetic scaffolds are utilized for accommodating cell growth and bone tissue genesis. The scaffold has to promote biological processes such as the production of extra-cellular matrix and vascularisation, furthermore the scaffold has to withstand the mechanical loads acting on it and to transfer them to the natural tissues located in the vicinity. The design of a scaffold for the guided regeneration of a bony tissue requires a multidisciplinary approach. Finite element method and mechanobiology can be used in an integrated approach to find the optimal parameters governing bone scaffold performance.In this paper, a review of the studies that through a combined use of finite element method and mechano-regulation algorithms described the possible patterns of tissue differentiation in biomimetic scaffolds for bone tissue engineering is given. Firstly, the generalities of the finite element method of structural analysis are outlined; second, the issues related to the generation of a finite element model of a given anatomical site or of a bone scaffold are discussed; thirdly, the principles on which mechanobiology is based, the principal theories as well as the main applications of mechano-regulation models in bone tissue engineering are described; finally, the limitations of the mechanobiological models and the future perspectives are indicated.  相似文献   

16.
As tissue engineering becomes more of a clinical reality through the ongoing bench to bedside transition, research in this field must focus on addressing relevant clinical situations. Although most in vivo work in the area of bone tissue engineering focuses on bone regeneration within sterile, surgically created defects, there is a growing need for the investigation of bone tissue engineering approaches within contaminated or scarred wound beds, such as those that may be encountered following traumatic injury or during delayed reconstruction/regeneration. Significant work has been performed in the area of local drug delivery via biomaterial carriers, but there is little intersection in the available literature between antibiotic delivery and tissue regeneration. In this review, we examine recent advances in segmental bone defect animal models, bone tissue engineering, and drug delivery with the goal of identifying promising approaches and areas needing further investigation towards developing both a better understanding of and new tissue engineering approaches for addressing infection control while simultaneously initiating bone regeneration.  相似文献   

17.
A paradigm shift is taking place in orthopaedic and reconstructive surgery from using medical devices and tissue grafts to a tissue engineering approach that uses biodegradable scaffolds combined with cells or biological molecules to repair and/or regenerate tissues. One of the potential benefits offered by solid free-form fabrication technology (SFF) is the ability to create scaffolds with highly reproducible architecture and compositional variation across the entire scaffold, due to its tightly controlled computer-driven fabrication. In this review, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design in bone engineering.We also discuss the application-specific modifications driven by surgeon's requirements in vitro and/or in vivo. Next, we review the current use of SFF techniques in scaffold fabrication in the context of their clinical use in bone regeneration. Lastly, we comment on future developments in our groups, such as the functionalization of novel composite scaffolds with combinations of growth factors; and more specifically the promising area of heparan sulphate polysaccharide immobilization within the bone tissue engineering arena.  相似文献   

18.
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone, and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues. This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral, and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry and gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering.  相似文献   

19.
The treatment of long bone defects and non-unions is still a major clinical and socio-economical problem. In addition to the non-operative therapeutic options, such as the application of various forms of electricity, extracorporeal shock wave therapy and ultrasound therapy, which are still in clinical use, several operative treatment methods are available. No consensus guidelines are available and the treatments of such defects differ greatly. Therefore, clinicians and researchers are presently investigating ways to treat large bone defects based on tissue engineering approaches. Tissue engineering strategies for bone regeneration seem to be a promising option in regenerative medicine. Several in vitro and in vivo studies in small and large animal models have been conducted to establish the efficiency of various tissue engineering approaches. Neverthelsss, the literature still lacks controlled studies that compare the different clinical treatment strategies currently in use. However, based on the results obtained so far in diverse animal studies, bone tissue engineering approaches need further validation in more clinically relevant animal models and in clinical pilot studies for the translation of bone tissue engineering approaches into clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号