首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bohling JH  Waits LP 《Molecular ecology》2011,20(10):2142-2156
Predicting spatial patterns of hybridization is important for evolutionary and conservation biology yet are hampered by poor understanding of how hybridizing species can interact. This is especially pertinent in contact zones where hybridizing populations are sympatric. In this study, we examined the extent of red wolf (Canis rufus) colonization and introgression where the species contacts a coyote (C. latrans) population in North Carolina, USA. We surveyed 22,000km(2) in the winter of 2008 for scat and identified individual canids through genetic analysis. Of 614 collected scats, 250 were assigned to canids by mitochondrial DNA (mtDNA) sequencing. Canid samples were genotyped at 6-17 microsatellite loci (nDNA) and assigned to species using three admixture criteria implemented in two Bayesian clustering programs. We genotyped 82 individuals but none were identified as red wolves. Two individuals had red wolf mtDNA but no significant red wolf nDNA ancestry. One individual possessed significant red wolf nDNA ancestry (approximately 30%) using all criteria, although seven other individuals showed evidence of red wolf ancestry (11-21%) using the relaxed criterion. Overall, seven individuals were classified as hybrids using the conservative criteria and 37 using the relaxed criterion. We found evidence of dog (C. familiaris) and gray wolf (C. lupus) introgression into the coyote population. We compared the performance of different methods and criteria by analyzing known red wolves and hybrids. These results suggest that red wolf colonization and introgression in North Carolina is minimal and provide insights into the utility of Bayesian clustering methods to detect hybridization.  相似文献   

2.
Bayesian clustering methods have emerged as a popular tool for assessing hybridization using genetic markers. Simulation studies have shown these methods perform well under certain conditions; however, these methods have not been evaluated using empirical data sets with individuals of known ancestry. We evaluated the performance of two clustering programs, baps and structure , with genetic data from a reintroduced red wolf (Canis rufus) population in North Carolina, USA. Red wolves hybridize with coyotes (C. latrans), and a single hybridization event resulted in introgression of coyote genes into the red wolf population. A detailed pedigree has been reconstructed for the wild red wolf population that includes individuals of 50–100% red wolf ancestry, providing an ideal case study for evaluating the ability of these methods to estimate admixture. Using 17 microsatellite loci, we tested the programs using different training set compositions and varying numbers of loci. structure was more likely than baps to detect an admixed genotype and correctly estimate an individual's true ancestry composition. However, structure was more likely to misclassify a pure individual as a hybrid. Both programs were outperformed by a maximum‐likelihood‐based test designed specifically for this system, which never misclassified a hybrid (50–75% red wolf) as a red wolf or vice versa. Training set composition and the number of loci both had an impact on accuracy but their relative importance varied depending on the program. Our findings demonstrate the importance of evaluating methods used for detecting admixture in the context of endangered species management.  相似文献   

3.
Sequence analysis of the mitochondrial DNA control region from 112 southeastern US coyotes (Canis latrans) revealed 12 individuals with a haplotype closely related to those in domestic dogs. Phylogenetic analyses grouped this new haplotype in the dog/grey wolf (Canis familiaris/Canis lupus) clade with 98% bootstrap support. These results demonstrate that a male coyote hybridized with a female dog, and female hybrid offspring successfully integrated into the coyote population. The widespread distribution of this haplotype from Florida to West Virginia suggests that the hybridization event occurred long ago before the southeastern USA was colonized by coyotes. However, it could have occurred in the southeastern USA before the main front of coyotes arrived in the area between male coyotes released for sport and a local domestic dog. The introgression of domestic dog genes into the southeastern coyote population does not appear to have substantially affected the coyote's genetic, morphological, or behavioural integrity. However, our results suggest that, contrary to previous reports, hybridization can occur between domestic and wild canids, even when the latter is relatively abundant. Therefore, hybridization may be a greater threat to the persistence of wild canid populations than previously thought.  相似文献   

4.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

5.
The US Fish and Wildlife Service's (USFWS) Red Wolf Recovery Program recognizes hybridization with coyotes as the primary threat to red wolf recovery. Efforts to curb or stop hybridization are hampered in two ways. First, hybrid individuals are difficult to identify based solely on morphology. Second, managers need to effectively search 6000 km(2) for the presence of coyotes and hybrids. We develop a noninvasive method to screen large geographical areas for coyotes and hybrids with maternal coyote ancestry by combining mitochondrial DNA sequence analysis of faeces (scat) and geographic information system (GIS) technology. This method was implemented on the Alligator River National Wildlife Refuge (1000 km(2)) in northeastern North Carolina. A total of 956 scats were collected in the spring of 2000 and 2001 and global positioning system (GPS) coordinates were recorded. Seventy-five percent of the scats were assigned to species and five coyote/hybrid scats were detected. Placement of scat location coordinates on a map of the experimental population area revealed that four of the coyote/hybrid scats were detected within the home ranges of sterilized hybrids. The other coyote/hybrid scat indicated the presence of a previously unknown individual. We suggest this method be expanded to include more of the experimental population area and be optimized for use with nuclear markers to improve detection of hybrid and back-crossed individuals.  相似文献   

6.
Interference competition with wolves Canis lupus is hypothesized to limit the distribution and abundance of coyotes Canis latrans, and the extirpation of wolves is often invoked to explain the expansion in coyote range throughout much of North America. We used spatial, seasonal and temporal heterogeneity in wolf distribution and abundance to test the hypothesis that interference competition with wolves limits the distribution and abundance of coyotes. From August 2001 to August 2004, we gathered data on cause-specific mortality and survival rates of coyotes captured at wolf-free and wolf-abundant sites in Grand Teton National Park (GTNP), Wyoming, USA, to determine whether mortality due to wolves is sufficient to reduce coyote densities. We examined whether spatial segregation limits the local distribution of coyotes by evaluating home-range overlap between resident coyotes and wolves, and by contrasting dispersal rates of transient coyotes captured in wolf-free and wolf-abundant areas. Finally, we analysed data on population densities of both species at three study areas across the Greater Yellowstone Ecosystem (GYE) to determine whether an inverse relationship exists between coyote and wolf densities. Although coyotes were the numerically dominant predator, across the GYE, densities varied spatially and temporally in accordance with wolf abundance. Mean coyote densities were 33% lower at wolf-abundant sites in GTNP, and densities declined 39% in Yellowstone National Park following wolf reintroduction. A strong negative relationship between coyote and wolf densities (beta = -3.988, P < 0.005, r(2) = 0.54, n = 16), both within and across study sites, supports the hypothesis that competition with wolves limits coyote populations. Overall mortality of coyotes resulting from wolf predation was low, but wolves were responsible for 56% of transient coyote deaths (n = 5). In addition, dispersal rates of transient coyotes captured at wolf-abundant sites were 117% higher than for transients captured in wolf-free areas. Our results support the hypothesis that coyote abundance is limited by competition with wolves, and suggest that differential effects on survival and dispersal rates of transient coyotes are important mechanisms by which wolves reduce coyote densities.  相似文献   

7.
Miller CR  Adams JR  Waits LP 《Molecular ecology》2003,12(12):3287-3301
The principal threat to the persistence of the endangered red wolf (Canis rufus) in the wild is hybridization with the coyote (Canis latrans). To facilitate idengification and removal of hybrids, assignment tests are developed which use genotype data to estimate identity as coyote, 1/4, 1/2, 3/4 or full red wolf. The tests use genotypes from the red wolves that founded the surviving population and the resulting pedigree, rather than a contemporary red wolf sample. The tests are evaluated by analysing both captive red wolves at 18 microsatellite loci, and data simulated under a highly parameterized, biologically reasonable model. The accuracy of assignment rates are generally high, with over 95% of known red wolves idengified correctly. There are, however, tradeoffs between ambiguous assignments and misassignments, and between misidengifying red wolves as hybrids and hybrids as red wolves. These result in a compromise between limiting introgression and avoiding demographic losses. The management priorities and level of introgression determine the combination of test and removal strategy that best balances these tradeoffs. Ultimately, we conclude that the use of the assignment tests has the capacity to arrest and reverse introgression. To our knowledge, the presented approach is novel in that it accounts for genetic drift when the genotypes under analysis are temporally separated from the reference populations to which they are being assigned. These methods may be valuable in cases where reference databases for small populations have aged substantially, pedigree information is available or data are generated from historical samples.  相似文献   

8.
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

9.
A retrospective review was done of traumatic and osseous lesions in 241 wolves (Canis lupus) and 316 coyotes (Canis latrans) necropsied at the University of Saskatchewan between 1971 and 1990. Most lesions were the result of interspecific conflict. The most frequently occurring lesion in wolves was fracture of one or more bones, primarily ribs. Lesions were healed in most cases and appeared to be compatible with injuries caused by prey animals. One wolf, found dead, died as a result of thoracic trauma. Limb and skull fractures were less common. Fractures were uncommon in coyotes. The most frequent injuries in coyotes were related to gunshot wounds. Four coyotes had been killed but not eaten by wolves. One wolf had been killed and another attacked by wolves. Porcupine (Erethizon dorsatum) quills contributed to the death of a wolf and two coyotes. Degenerative joint disease, involving the spinal column and limb joints, was found in a few individuals of both species. A coyote had severe anomalies of the spinal column and a wolf had anomalous external genitalia.  相似文献   

10.
Resolving the taxonomy and historic ranges of species are essential to recovery plans for species at risk and conservation programs that aim to restore extirpated populations. In eastern North America, planning for wolf population restoration is complicated by the disputed historic distributions of two wolf species: the Old World-evolved gray wolf (Canis lupus) and the New World-evolved eastern wolf (C. lycaon). We used genetic and morphometric data from 4- to 500-year-old Canis samples excavated in London, Ontario, Canada to help clarify the historic range of these two wolf species in the eastern temperate forests of North America. We isolated DNA and sequenced the mitochondrial control region and found that none of the samples were of gray wolf origin. Two of the DNA sequences corresponded to those found in present day coyotes (C. latrans), but morphometric comparisons show an eastern wolf, not coyote, origin. The remaining two sequences matched ancient domestic dog haplotypes. These results suggest that the New World-evolved eastern wolf, not the gray wolf, occupied this region prior to the arrival of European settlers, although eastern-gray wolf hybrids cannot be ruled out. Furthermore, our data support the idea of a shared common ancestry between eastern wolves and western coyotes, and that the distribution of gray wolves at this time probably did not include the eastern temperate forests of North America.  相似文献   

11.
Sterilization of wild canids is being used experimentally in many management applications. Few studies have clearly demonstrated vasectomized and tubal-ligated canids will retain pair-bonding and territorial behaviors. We tested whether territory fidelity, space use, and survival rates of surgically sterilized coyote (Canis latrans) packs were different from sham-operated coyote packs. We captured and radio-collared 30 coyotes in December 2006. Sixteen of these animals were sterilized via vasectomy or tubal ligation, and 14 were given sham-surgeries (i.e., remained intact). We monitored these animals using telemetry and visual observations through 2 breeding seasons and 1 pup-rearing season from December 2006 to March 2008. Mean pack size was not significantly different between sterile and intact coyote packs. We found no difference in home range size between sterile and intact coyotes. We found differences in home range and core area overlap between sterile and intact coyote packs in some seasons; however, this difference may have existed prior to sterilization. Home range fidelity was not significantly different between sterile and intact coyotes. All coyotes had higher residency rates during the breeding season, with no differences between sterile and intact coyotes. Survival rates were correlated with biological season, but there were no differences in survival rates between sterile and intact coyotes. We concluded that surgical sterilization of coyotes did not affect territory fidelity, survival rates, or home range maintenance.  相似文献   

12.
Measuring wildlife responses to anthropogenic activities often requires long‐term, large‐scale datasets that are difficult to collect. This is particularly true for rare or cryptic species, which includes many mammalian carnivores. Citizen science, in which members of the public participate in scientific work, can facilitate collection of large datasets while increasing public awareness of wildlife research and conservation. Hunters provide unique benefits for citizen science given their knowledge and interest in outdoor activities. We examined how anthropogenic changes to land cover impacted relative abundance of two sympatric canids, coyote (Canis latrans), and red fox (Vulpes vulpes) at a large spatial scale. In order to assess how land cover affected canids at this scale, we used citizen science data from bow hunter sighting logs collected throughout New York State, USA, during 2004–2017. We found that the two species had contrasting responses to development, with red foxes positively correlated and coyotes negatively correlated with the percentage of low‐density development. Red foxes also responded positively to agriculture, but less so when agricultural habitat was fragmented. Agriculture provides food and denning resources for red foxes, whereas coyotes may select forested areas for denning. Though coyotes and red foxes compete in areas of sympatry, we did not find a relationship between species abundance, likely a consequence of the coarse spatial resolution used. Red foxes may be able to coexist with coyotes by altering their diets and habitat use, or by maintaining territories in small areas between coyote territories. Our study shows the value of citizen science, and particularly hunters, in collection of long‐term data across large areas (i.e., the entire state of New York) that otherwise would unlikely be obtained.  相似文献   

13.
ABSTRACT Interactions between wolves (Canis lupus) and coyotes (C. latrans) can have significant impacts on their distribution and abundance. We compared diets of recently translocated Mexican wolves (C. l. baileyi) with diets of resident coyotes in Arizona and New Mexico, USA. We systematically collected scats during 2000 and 2001. Coyote diet was composed mostly of mammalian species, followed by vegetation and insects. Elk (Cervus elaphus) was the most common item in coyote scats. Mexican wolf diet had a higher proportion of large mammals and fewer small mammals than coyote diet; however, elk was also the most common food item in Mexican wolf scats. Our results suggest that Mexican wolf diet was more similar to coyote diet than previously reported, but coyotes had more seasonal variation. Considering results in other areas, we expect that Mexican wolves will have a negative impact on coyotes through direct mortality and possibly competition. Reintroduction of Mexican wolves may have great impacts on communities by changing relationships among other predators and their prey.  相似文献   

14.
Top predators are disappearing worldwide, significantly changing ecosystems that depend on top-down regulation. Conflict with humans remains the primary roadblock for large carnivore conservation, but for the eastern wolf (Canis lycaon), disagreement over its evolutionary origins presents a significant barrier to conservation in Canada and has impeded protection for grey wolves (Canis lupus) in the USA. Here, we use 127 235 single-nucleotide polymorphisms (SNPs) identified from restriction-site associated DNA sequencing (RAD-seq) of wolves and coyotes, in combination with genomic simulations, to test hypotheses of hybrid origins of Canis types in eastern North America. A principal components analysis revealed no evidence to support eastern wolves, or any other Canis type, as the product of grey wolf × western coyote hybridization. In contrast, simulations that included eastern wolves as a distinct taxon clarified the hybrid origins of Great Lakes-boreal wolves and eastern coyotes. Our results support the eastern wolf as a distinct genomic cluster in North America and help resolve hybrid origins of Great Lakes wolves and eastern coyotes. The data provide timely information that will shed new light on the debate over wolf conservation in eastern North America.  相似文献   

15.
We examined variation at a class II major histocompatibility complex (MHC) gene (DRB1) in the captive red wolf population and samples of coyotes from Texas and North Carolina. We found 4 alleles in the 48 red wolves, 8 alleles in the 10 coyotes from Texas and 15 alleles in the 29 coyotes from North Carolina. Two of the four alleles found in red wolves, Caru-2 and Caru-4, were found in both the Texas and North Carolina coyote samples. Allele Caru-1, previously found in gray wolves, was also found in the North Carolina sample. The most frequent red wolf allele, Caru-3, was not found in any of the coyote samples. However, an allele found in both the Texas and North Carolina coyote samples is only one nucleotide (one amino acid) different from this red wolf allele. Overall, it appears from examination of this MHC gene that red wolves are more closely related to coyotes than to gray wolves. There were a number of different types of evidence supporting the action of balancing selection in red wolves. Namely, there was: (i) an excess of heterozygotes compared with expectations; (ii) a higher rate of nonsynonymous than synonymous substitution for the functionally important antigen-binding site positions; (iii) an eight times higher average heterozygosity of individual amino acids at the positions identified as part of the antigen-binding site than those not associated with it; (iv) the amino acid divergence of four red wolf alleles was greater than that expected from a simulation of genetic drift; and (v) the distribution of alleles, and the distributions of amino acids at many positions were more even than expected from neutrality. Examination of the level and pattern of linkage disequilibria between pairs of sites suggest that the heterozygosity, substitution and frequencies at individual amino acids are not highly dependent upon each other.  相似文献   

16.
Previously, sequencing of mitochondrial DNA (mtDNA) from non-invasively collected faecal material (scat) has been used to help manage hybridization in the wild red wolf (Canis rufus) population. This method is limited by the maternal inheritance of mtDNA and the inability to obtain individual identification. Here, we optimize the use of nuclear DNA microsatellite markers on red wolf scat DNA to distinguish between individuals and detect hybrids. We develop a data filtering method in which scat genotypes are compared to known blood genotypes to reduce the number of PCR amplifications needed. We apply our data filtering method and the more conservative maximum likelihood ratio method (MLR) of Miller et al. (2002 Genetics 160:357–366) to a scat dataset previously screened for hybrids by sequencing of mtDNA. Using seven microsatellite loci, we obtained genotypes for 105 scats, which were matched to 17 individuals. The PCR amplification success rate was 50% and genotyping error rates ranged from 6.6% to 52.1% per locus. Our data filtering method produced comparable results to the MLR method, and decreased the time and cost of analysis by 25%. Analysis of this dataset using our data filtering method verified that no hybrid individuals were present in the Alligator River National Wildlife Refuge, North Carolina in 2000. Our results demonstrate that nuclear DNA microsatellite analysis of red wolf scats provides an efficient and accurate approach to screen for new individuals and hybrids.  相似文献   

17.
Anthropogenic hybridization of historically isolated taxa has become a primary conservation challenge for many imperiled species. Indeed, hybridization between red wolves (Canis rufus) and coyotes (Canis latrans) poses a significant challenge to red wolf recovery. We considered seven hypotheses to assess factors influencing hybridization between red wolves and coyotes via pair‐bonding between the two species. Because long‐term monogamy and defense of all‐purpose territories are core characteristics of both species, mate choice has long‐term consequences. Therefore, red wolves may choose similar‐sized mates to acquire partners that behave similarly to themselves in the use of space and diet. We observed multiple factors influencing breeding pair formation by red wolves and found that most wolves paired with similar‐sized conspecifics and wolves that formed congeneric pairs with nonwolves (coyotes and hybrids) were mostly female wolves, the smaller of the two sexes. Additionally, we observed that lower red wolf abundance relative to nonwolves and the absence of helpers increased the probability that wolves consorted with nonwolves. However, successful pairings between red wolves and nonwolves were associated with wolves that maintained small home ranges. Behaviors associated with territoriality are energetically demanding and behaviors (e.g., aggressive interactions, foraging, and space use) involved in maintaining territories are influenced by body size. Consequently, we propose the hypothesis that size disparities between consorting red wolves and coyotes influence positive assortative mating and may represent a reproductive barrier between the two species. We offer that it may be possible to maintain wild populations of red wolves in the presence of coyotes if management strategies increase red wolf abundance on the landscape by mitigating key threats, such as human‐caused mortality and hybridization with coyotes. Increasing red wolf abundance would likely restore selection pressures that increase mean body and home‐range sizes of red wolves and decrease hybridization rates via reduced occurrence of congeneric pairs.  相似文献   

18.
Laura R. Prugh  Stephen M. Arthur 《Oikos》2015,124(9):1241-1250
Large predators often suppress ungulate population growth, but they may also suppress the abundance of smaller predators that prey on neonatal ungulates. Antagonistic interactions among predators may therefore need to be integrated into predator–prey models to effectively manage ungulate–predator systems. We present a modeling framework that examines the net impact of interacting predators on the population growth rate of shared prey, using interactions among wolves Canis lupus, coyotes Canis latrans and Dall sheep Ovis dalli dalli as a case study. Wolf control is currently employed on approximately 16 million ha in Alaska to increase the abundance of ungulates for human harvest. We hypothesized that the positive effects of wolf control on Dall sheep population growth could be counteracted by increased levels of predation by coyotes. Coyotes and Dall sheep adult females (ewes) and lambs were radiocollared in the Alaska Range from 1999–2005 to estimate fecundity, age‐specific survival rates, and causes of mortality in an area without wolf control. We used stage‐structured population models to simulate the net effect of wolf control on Dall sheep population growth (λ). Our models accounted for stage‐specific predation rates by wolves and coyotes, compensatory mortality, and the potential release of coyote populations due to wolf control. Wolves were the main predators of ewes, coyotes were the main predators of lambs, and wolves were the main source of mortality for coyotes. Population models predicted that wolf control could increase sheep λ by 4% per year in the absence of mesopredator release. However, if wolf control released coyote populations, our models predicted that sheep λ could decrease by up to 3% per year. These results highlight the importance of integrating antagonistic interactions among predators into predator–prey models, because the net effect of predator management on shared prey can depend critically on the strength of mesopredator release.  相似文献   

19.
Reliable population estimates are necessary for effective conservation and management, and faecal genotyping has been used successfully to estimate the population size of several elusive mammalian species. Information such as changes in population size over time and survival rates, however, are often more useful for conservation biology than single population estimates. We evaluated the use of faecal genotyping as a tool for monitoring long-term population dynamics, using coyotes (Canis latrans) in the Alaska Range as a case study. We obtained 544 genotypes from 56 coyotes over 3 years (2000-2002). Tissue samples from all 15 radio-collared coyotes in our study area had > or = 1 matching faecal genotypes. We used flexible maximum-likelihood models to study coyote population dynamics, and we tested model performance against radio telemetry data. The staple prey of coyotes, snowshoe hares (Lepus americanus), dramatically declined during this study, and the coyote population declined nearly two-fold with a 1(1/2)-year time lag. Survival rates declined the year after hares crashed but recovered the following year. We conclude that long-term monitoring of elusive species using faecal genotyping is feasible and can provide data that are useful for wildlife conservation and management. We highlight some drawbacks of standard open-population models, such as low precision and the requirement of discrete sampling intervals, and we suggest that the development of open models designed for continuously collected data would enhance the utility of faecal genotyping as a monitoring tool.  相似文献   

20.
Interpretation of the genetic composition and taxonomic history of wolves in the western Great Lakes region (WGLR) of the United States has long been debated and has become more important to their conservation given the recent changes in their status under the Endangered Species Act. Currently, the two competing hypotheses on WGLR wolves are that they resulted from hybridization between (i) grey wolves (Canis lupus) and western coyotes (C. latrans) or (ii) between grey wolves and eastern wolves (C. lycaon). We performed a genetic analysis of sympatric wolves and coyotes from the region to assess the degree of reproductive isolation between them and to clarify the taxonomic status of WGLR wolves. Based on data from maternal, paternal and bi‐parental genetic markers, we demonstrate a clear genetic distinction between sympatric wolves and coyotes and conclude that they are reproductively isolated and that wolf–coyote hybridization in the WGLR is uncommon. The data reject the hypothesis that wolves in the WGLR derive from hybridization between grey wolves and western coyotes, and we conclude that the extant WGLR wolf population is derived from hybridization between grey wolves and eastern wolves. Grey‐eastern wolf hybrids (C. lupus × lycaon) comprise a substantial population that extends across Michigan, Wisconsin, Minnesota and western Ontario. These findings have important implications for the conservation and management of wolves in North America, specifically concerning the overestimation of grey wolf numbers in the United States and the need to address policies for hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号