首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents results of 1 year (from March 25, 2003 to March 24, 2004, 366 days) of continuous measurements of net ecosystem CO2 exchange (NEE) above a steppe in Mongolia using the eddy covariance technique. The steppe, typical of central Mongolia, is dominated by C3 plants adapted to the continental climate. The following two questions are addressed: (1) how do NEE and its components: gross ecosystem production (GEP) and total ecosystem respiration (Reco) vary seasonally? (2) how do NEE, GEP, and Reco respond to biotic and abiotic factors? The hourly minimal NEE and the hourly maximal Reco were −3.6 and 1.2 μmol m−2 s−1, respectively (negative values denoting net carbon uptake by the canopy from the atmosphere). Peak daily sums of NEE, GEP, and Reco were −2.3, 3.5, and 1.5 g C m−2 day−1, respectively. The annual sums of GEP, Reco, and NEE were 179, 138, and −41 g C m−2, respectively. The carbon removal by sheep was estimated to range between 10 and 82 g C m−2 yr−1 using four different approaches. Including these estimates in the overall carbon budget yielded net ecosystem productivity of −23 to +20 g C m−2 yr−1. Thus, within the remaining experimental uncertainty the carbon budget at this steppe site can be considered to be balanced. For the growing period (from April 23 to October 21, 2003), 26% and 53% of the variation in daily NEE and GEP, respectively, could be explained by the changes in leaf area index. Seasonality of GEP, Reco, and NEE was closely associated with precipitation, especially in the peak growing season when GEP and Reco were largest. Water stress was observed in late July to early August, which switched the steppe from a carbon sink to a carbon source. For the entire growing period, the light response curves of daytime NEE showed a rather low apparent quantum yield (α=−0.0047 μmol CO2 μmol−1 photons of photosynthetically active radiation). However, the α values varied with air temperature (Ta), vapor pressure deficit, and soil water content.  相似文献   

2.
This study analyzes 9 years of eddy‐covariance (EC) data carried out in a Pacific Northwest Douglas‐fir (Pseudotsuga menzesii) forest (58‐year old in 2007) on the east coast of Vancouver Island, Canada, and characterizes the seasonal and interannual variability in net ecosystem productivity (NEP), gross primary productivity (GPP), and ecosystem respiration (Re) and primary climatic controls on these fluxes. The annual values (± SD) of NEP, GPP and Re were 357 ± 51, 2124 ± 125, and 1767 ± 146 g C m?2 yr?1, respectively, with ranges of 267–410, 1592–2338, and 1642–2071 g C m?2 yr?1, respectively. Spring to early summer (March–June) accounted for more than 80% of annual NEP while late spring to early autumn (May–August) was mainly responsible for its interannual variability (~80%). The major drivers of interannual variability in annual carbon (C) fluxes were annual and spring mean air temperatures (Ta) and water deficiency during late summer and autumn (July–October) when this Douglas‐fir forest growth was often water‐limited. Photosynthetically active radiation (Q), and the combination of Q and soil water content (θ) explained 85% and 91% of the variance of monthly GPP, respectively; and 91% and 96% of the variance of monthly Re was explained by Ta and the combination of Ta and θ, respectively. Annual net C sequestration was high during optimally warm and normal precipitation years, but low in unusually warm or severely dry years. Excluding 1998 and 1999, the 2 years strongly affected by an El Niño/La Niña cycle, annual NEP significantly decreased with increasing annual mean Ta. Annual NEP will likely decrease whereas both annual GPP and Re will likely increase if the future climate at the site follows a trend similar to that of the past 40 years.  相似文献   

3.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

4.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   

5.
To evaluate the effects on CO2 exchange of clearcutting a mixed forest and replacing it with a plantation, 4.5 years of continuous eddy covariance measurements of CO2 fluxes and soil respiration measurements were conducted in a conifer-broadleaf mixed forest in Hokkaido, Japan. The mixed forest was a weak carbon sink (net ecosystem exchange, −44 g C m−2 yr−1), and it became a large carbon source (569 g C m−2 yr−1) after clearcutting. However, the large emission in the harvest year rapidly decreased in the following 2 years (495 and 153 g C m−2 yr−1, respectively) as the gross primary production (GPP) increased, while the total ecosystem respiration (RE) remained relatively stable. The rapid increase in GPP was attributed to an increase in biomass and photosynthetic activity of Sasa dwarf bamboo, an understory species. Soil respiration increased in the 3 years following clearcutting, in the first year mainly owing to the change in the gap ratio of the forest, and in the following years because of increased root respiration by the bamboo. The ratio of soil respiration to RE increased from 44% in the forest to nearly 100% after clearcutting, and aboveground parts of the vegetation contributed little to the RE although the respiration chamber measurements showed heterogeneous soil condition after clearcutting.  相似文献   

6.
Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere research sites located at latitudes ranging from ∼29°N to ∼64°N. We computed the standard deviation of annual NEE integrals at individual sites to represent absolute interannual variability (AIAV), and the corresponding coefficient of variation as a measure of relative interannual variability (RIAV). Our results showed decreased trends of annual NEE with increasing latitude for both deciduous broadleaf forests and evergreen needleleaf forests. Gross primary production (GPP) explained a significant proportion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore, RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed air temperature was the primary environmental factor that determined RIAV of NEE in deciduous broadleaf forest across the North American sites, and none of the chosen climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual NEE significantly increased with latitude in grasslands. Precipitation was dominant environmental factor for the spatial variation of magnitude and IAV in GPP and Re in grasslands.  相似文献   

7.
为揭示凋落物去除和添加处理对草原生态系统碳通量的影响, 2013和2014年连续两年在成熟群落围封样地进行凋落物去除实验、在退化群落放牧样地进行凋落物添加实验, 并运用静态箱法探讨碳通量变化规律并分析其主要影响因子。结果表明: 两种群落的净生态系统CO2交换(NEE)有明显的季节性变化。对成熟群落而言, 去除50%凋落物显著增加了NEE, 去除100%凋落物显著降低了NEE, 而对生态系统总初级生产力(GEP)和生态系统呼吸(ER)均无显著影响; 对退化群落而言, 凋落物添加显著增加了GEPNEE, 而对ER无显著影响。两种群落的GEP与10 cm土壤温度显著正相关, 但NEEGEP的变化规律与土壤温度相反, 与10 cm土壤湿度相同。由此可见, 凋落物去除和添加处理对生态系统碳通量的影响主要是改变土壤湿度和地上生物量,而不是改变土壤温度。该研究为合理利用凋落物改善草地生态系统管理和促进草地恢复提供了理论依据。  相似文献   

8.
The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night‐time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature–respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature–respiration relationship. A fundamental difference in air temperature‐based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6–2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R.  相似文献   

9.
华北平原玉米田生态系统光合作用特征及影响因素   总被引:1,自引:0,他引:1  
同小娟  李俊  刘渡 《生态学报》2011,31(17):4889-4899
采用涡度相关法对华北平原夏玉米田进行了连续4a(2003-2006年)的碳通量观测,结果表明:夏玉米田生态系统初始量子效率(α)、最大光合速率(Pmax)、暗呼吸速率(Rd)和总初级生产力(GPP)随作物生长发育而变化。在夏玉米生育前期和后期,α、PmaxRdGPP都比较小,其最大值出现在抽穗期/灌浆期。2003-2006年,夏玉米生长季平均α、PmaxRd的范围分别为0.054-0.124 μmol/μmol、1.72-2.93 mg CO2 · m-2 · s-1、0.23-0.38 mg CO2 · m-2 · s-1。α、PmaxRd均随叶面积指数(LAI)增加呈指数增长。2003-2006年夏玉米生长季GPP总量分别为806.2、741.5、703.0、817.4 g C/m2,年际差异较大。玉米田生态系统GPP随温度升高呈指数增长。在玉米营养生长阶段,GPPLAI增加而增大,两者之间的关系可用直角双曲线方程来表示;生殖生长阶段,GPPLAI降低而下降.相同LAI下,生殖生长阶段的GPP明显低于营养生长阶段。  相似文献   

10.
Vegetation plays a central role in controlling terrestrial carbon (C) exchange, but quantifying its impacts on C cycling on time scales of ecological succession is hindered by a lack of long‐term observations. The net ecosystem exchange of carbon (NEE) was measured for several years in adjacent ecosystems that represent distinct phases of ecological succession in the southeastern USA. The experiment was designed to isolate the role of vegetation – apart from climate and soils – in controlling biosphere–atmosphere fluxes of CO2 and water vapor. NEE was near zero over 5 years at an early successional old‐field ecosystem (OF). However, mean annual NEE was nearly equal, approximately ?450 g C m?2 yr?1, at an early successional planted pine forest (PP) and a late successional hardwood forest (HW) due to the sensitivity of the former to drought and ice storm damage. We hypothesize that these observations can be explained by the relationships between gross ecosystem productivity (GEP), ecosystem respiration (RE) and canopy conductance, and long‐term shifts in ecosystem physiology in response to climate to maintain near‐constant ecosystem‐level water‐use efficiency (EWUE). Data support our hypotheses, but future research should examine if GEP and RE are causally related or merely controlled by similar drivers. At successional time scales, GEP and RE observations generally followed predictions from E. P. Odum's ‘Strategy of Ecosystem Development’, with the surprising exception that the relationship between GEP and RE resulted in large NEE at the late successional HW. A practical consequence of this research suggests that plantation forestry may confer no net benefit over the conservation of mature forests for C sequestration.  相似文献   

11.
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000.  相似文献   

12.
Carbon sequestration in boreal jack pine stands following harvesting   总被引:2,自引:0,他引:2  
A large area of boreal jack pine (Pinus banksiana Lamb.) forest in Canada is recovering from clear‐cut harvesting, and the carbon (C) balance of these regenerating forests remains uncertain. Net ecosystem CO2 exchange was measured using the eddy‐covariance technique at four jack pine sites representing different stages of stand development: three postharvest sites (HJP02, HJP94, and HJP75) and one preharvest site (OJP). The four sites, located in the southern Canadian boreal forest, Saskatchewan, Canada, are typical of low productivity jack pine stands and were 2, 10, 29, and 90 years old in 2004, respectively. Mean annual net ecosystem production (NEP) for 2004 and 2005 was ?137±11, 19±16, 73±28, and 22±30 g C m?2 yr?1 at HJP02, HJP94, HJP75 and OJP, respectively, showing the postharvest jack pine stands to be moderate C sources immediately after harvesting, weak sinks at 10 years, moderate C sinks at 30 years, then weak C sinks at 90 years. Mean annual gross ecosystem photosynthesis (GEP) for the 2 years was 96±10, 347±20, 576±34, and 583±35 g C m?2 yr?1 at HJP02, HJP94, HJP75, and OJP, respectively. The ratio of annual ecosystem respiration (R) to annual GEP was 2.51±0.15, 0.95±0.04, 0.87±0.03, and 0.96±0.03. Seasonally, NEP peaked in May or June at all four sites but GEP and R were highest in July. R at a reference soil temperature of 10 °C, ecosystem quantum yield and photosynthetic capacity were lowest for the 2‐year‐old stand. R was most sensitive to soil temperature for the 90‐year‐old stand. The primary source of variability in NEP over the course of succession of the jack pine ecosystem following harvesting was stand age due to the changes in leaf area index. Intersite variability in GEP and R was an order of magnitude greater than interannual variability at OJP. For both young and old stands, GEP had greater interannual variability than R and played a more important role than R in interannual variation in NEP. Based on year‐round flux measurements from 2000 to 2005, the 10‐year stand had larger interannual variability in GEP and R than the 90‐year stand. Interannual variability in NEP was driven primarily by early‐growing‐season temperature and growing‐season length. Photosynthesis played a dominant role in the rapid rise in NEP early in stand development. Late in stand development, however, the subtle decrease in NEP resulted primarily from increasing respiration.  相似文献   

13.
Eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide and sensible and latent heat have operated since clear felling of a 50‐year old maritime pine stand in Les Landes, in Southwestern France. Turbulent fluxes from the closed‐path system are computed via different methodologies, including those recommended from EUROFLUX (Adv. Ecol. Res. 30 (2000) 113; Agric. Forest Meteorol. 107 (2001a, b) 43 and 71), and sensitivity analysis demonstrates the merit of post‐processing for accurate flux calculation. Footprint modeling, energy balance closure, and empirical modeling corroborate the eddy flux measurements, indicating best reliability in the daytime. The ecosystem, a net source of atmospheric CO2, is capable of fixing carbon during fair weather during any season due to the abundance of re‐growing species (mostly grass), formerly from the understorey. Annual carbon loss of 200–340 g m?2 depends on the period chosen, with inter‐annual variability evident during the 18‐month measurement period and apparently related to available light. Empirical models, with weekly photosynthetic parameters corresponding to seasonal vegetation and respiration depending on soil temperature, fit the data well and allow partitioning of annual NEE into GPP and TER components. Comparison with a similar nearby mature forest (Agric. Forest Meteorol. 108 (2001) 183) indicates that clear‐cutting reduces GPP by two thirds but TER by only one third, transforming a strong forest sink into a source of CO2. Likewise, the loss of 50% of evapotranspiration (by the trees) leads to increased temperatures and thus reduced net radiation (by one third), and a 50% increase in sensible heat loss by the clear cut.  相似文献   

14.
High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near‐zero sink of atmospheric CO2 (NEE: ?0.3 ± 13.5 g C m?2). A nearby meadow wetland accumulated over 300 times more carbon (NEE: ?79.3 ± 20.0 g C m?2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on‐site was low (mean: 0.120–0.157) and similar to satellite measurements (mean: 0.155–0.163). However, weak plant growth resulted in poor satellite NDVI–NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate‐related changes to productivity on polar semideserts may be restricted.  相似文献   

15.
Eddy‐covariance measurements of net ecosystem carbon exchange (NEE) were carried out above a grazed Mediterranean C3/C4 grassland in southern Portugal, during two hydrological years, 2004–2005 and 2005–2006, of contrasting rainfall. Here, we examine the seasonal and interannual variation in NEE and its major components, gross primary production (GPP) and ecosystem respiration (Reco), in terms of the relevant biophysical controls. The first hydrological year was dry, with total precipitation 45% below the long‐term mean (669 mm) and the second was normal, with total precipitation only 12% above the long‐term mean. The drought conditions during the winter and early spring of the dry year limited grass production and the leaf area index (LAI) was very low. Hence, during the peak of the growth period, the maximum daily rate of NEE and the light‐use and water‐use efficiencies were approximately half of those observed in the normal year. In the summer of 2006, the warm‐season C4 grass, Cynodon dactylon L., exerted an evident positive effect on NEE by converting the ecosystem into a carbon sink after strong rain events and extending the carbon sequestration for several days, after the end of senescence of the C3 grasses. On an annual basis, the GPP and NEE were 524 and 49 g C m?2, respectively, for the dry year, and 1261 and ?190 g C m?2 for the normal year. Therefore, the grassland was a moderate net source of carbon to the atmosphere, in the dry year, and a considerable net carbon sink, in the normal year. In these 2 years of experiment the total amount of precipitation was the main factor determining the interannual variation in NEE. In terms of relevant controls, GPP and NEE were strongly related to incident photosynthetic photon flux density on short‐term time scales. Changes in LAI explained 84% and 77% of the variation found in GPP and NEE, respectively. Variations in Reco were mainly controlled by canopy photosynthesis. After each grazing event, the reduction in LAI affected negatively the NEE.  相似文献   

16.
Net ecosystem productivity (NEP), net primary productivity (NPP), and water vapour exchange of a mature Pinus ponderosa forest (44°30′ N, 121°37′ W) growing in a region subject to summer drought were investigated along with canopy assimilation and respiratory fluxes. This paper describes seasonal and annual variation in these factors, and the evaluation of two generalized models of carbon and water balance (PnET‐II and 3‐PG) with a combination of traditional measurements of NPP, respiration and water stress, and eddy covariance measurements of above‐and below‐canopy CO2 and water vapour exchange. The objective was to evaluate the models using two years of traditional and eddy covariance measurements, and to use the models to help interpret the relative importance of processes controlling carbon and water vapour exchange in a water‐limited pine ecosystem throughout the year. PnET‐II is a monthly time‐step model that is driven by nitrogen availability through foliar N concentration, and 3‐PG is a monthly time‐step quantum‐efficiency model constrained by extreme temperatures, drought, and vapour pressure deficits. Both models require few parameters and have the potential to be applied at the watershed to regional scale. There was 2/3 less rainfall in 1997 than in 1996, providing a challenge to modelling the water balance, and consequently the carbon balance, when driving the models with the two years of climate data, sequentially. Soil fertility was not a key factor in modelling processes at this site because other environmental factors limited photosynthesis and restricted projected leaf area index to ~1.6. Seasonally, GEP and LE were overestimated in early summer and underestimated through the rest of the year. The model predictions of annual GEP, NEP and water vapour exchange were within 1–39% of flux measurements, with greater disparity in 1997 because soil water never fully recharged. The results suggest that generalized models can provide insights to constraints on productivity on an annual basis, using a minimum of site data.  相似文献   

17.
In this study we examined ecosystem respiration (RECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of RECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of RECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of RECO. The maximum seasonal leaf area index (LAIMAX) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature Tref=15 °C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r2=0.52, P<0.001, n=104) even within each PFT. Besides LAIMAX, we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (Ndepo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAIMAX) which performed well in predicting the spatio‐temporal variability of RECO, explaining >70% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands.  相似文献   

18.
Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2) fluxes by analysing a 10‐year (2008–2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2 sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2 source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high‐WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2 source, as opposed to being a sink or neutral for CO2 in other years. Furthermore, the extreme inundation in 2016 was followed by a 4‐month postinundation period with lower net ecosystem CO2 uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2 balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2 sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.  相似文献   

19.
《植物生态学报》2018,42(3):349
为揭示凋落物去除和添加处理对草原生态系统碳通量的影响, 2013和2014年连续两年在成熟群落围封样地进行凋落物去除实验、在退化群落放牧样地进行凋落物添加实验, 并运用静态箱法探讨碳通量变化规律并分析其主要影响因子。结果表明: 两种群落的净生态系统CO2交换(NEE)有明显的季节性变化。对成熟群落而言, 去除50%凋落物显著增加了NEE, 去除100%凋落物显著降低了NEE, 而对生态系统总初级生产力(GEP)和生态系统呼吸(ER)均无显著影响; 对退化群落而言, 凋落物添加显著增加了GEPNEE, 而对ER无显著影响。两种群落的GEP与10 cm土壤温度显著正相关, 但NEEGEP的变化规律与土壤温度相反, 与10 cm土壤湿度相同。由此可见, 凋落物去除和添加处理对生态系统碳通量的影响主要是改变土壤湿度和地上生物量,而不是改变土壤温度。该研究为合理利用凋落物改善草地生态系统管理和促进草地恢复提供了理论依据。  相似文献   

20.
Simultaneous measurements of net ecosystem CO2 exchange (NEE) were made in a Florida scrub‐oak ecosystem in August 1997 and then every month between April 2000 to July 2001, using open top chambers (NEEO) and eddy covariance (NEEE). This study provided a cross validation of these two different techniques for measuring NEE. Unique characteristics of the comparison were that the measurements were made simultaneously, in the same stand, with large replicated chambers enclosing a representative portion of the ecosystem (75 m2, compared to approximately 1–2 ha measured by the eddy covariance system). The value of the comparison was greatest at night, when the microclimate was minimally affected by the chambers. For six of the 12 measurement periods, night NEEO was not significantly different to night NEEE, and for the other periods the maximum difference was 1.1 µ mol m ? 2s ? 1, with an average of 0.72 ± 0.09 µ mol m ? 2s ? 1. The comparison was more difficult during the photoperiod, because of differences between the microclimate inside and outside the chambers. During the photoperiod, air temperature (Tair) and air vapour pressure deficits (VPD) became progressively higher inside the chambers until mid‐afternoon. In the morning NEEO was higher than NEEE by about 26%, consistent with increased temperature inside the chambers. Over the mid‐day period and the afternoon, NEEO was 8% higher that NEEE, regardless of the large differences in microclimate. This study demonstrates both the uses and difficulties associated with attempting to cross validate NEE measurements made in chambers and using eddy covariance. The exercise was most useful at night when the chamber had a minimal effect on microclimate, and when the measurement of NEE is most difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号