首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum-bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin-1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support-our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth-promoting to outgrowth-inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones.  相似文献   

2.
The rat adrenal pheochromocytoma PC12 cell line is one of the traditional models for the study of neurite outgrowth and growth cone behavior. To clarify to what extent PC12 neurite terminals can be compared to neuronal growth cones, we have analyzed their morphology and protein distribution in fixed PC12 cells by immunocytochemistry. Our results show that that PC12 cells display a special kind of neurite terminal that includes a varicosity in close association with a growth cone. This hybrid terminal, or “varicone”, is characterized by the expression of specific markers not typically present in neuronal growth cones. For example, we show that calpain-2 is a specific marker of varicones and can be detected even before the neurite develops. Our data also shows that a fraction of PC12 neurites end in regular growth cones, which we have compared to hippocampal neurites as a control. We also report the extraordinary incidence of varicones in the literature referred to as “growth cones”. In summary, we provide evidence of two different kinds of neurite terminals in PC12 cells, including a PC12-specific terminal, which implies that care must be taken when using them as a model for neuronal growth cones or neurite outgrowth.  相似文献   

3.
Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum‐bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin‐1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth‐promoting to outgrowth‐inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285–301, 2002  相似文献   

4.
Neurite outgrowth is a morphological marker of neuronal differentiation and neuroregeneration, and the process includes four essential phases, namely initiation, elongation, guidance and cessation. Intrinsic and extrinsic signaling molecules seem to involve morphological changes of neurite outgrowth via various cellular signaling cascades phase transition. Although mechanisms associated with neurite outgrowth have been studied extensively, little is known about how phase transition is regulated during neurite outgrowth. 5-HT has long been studied with regard to its relationship to neurite outgrowth in invertebrate and vertebrate culture systems, and many studies have suggested 5-HT inhibits neurite elongation and growth cone motility, in particular, at the growing parts of neurite such as growth cones and filopodia. However, the underlying mechanisms need to be investigated. In this study, we investigated roles of 5-HT on neurite outgrowth using single serotonergic neurons C1 isolated from Helisoma trivolvis. We observed that 5-HT delayed phase transitions from initiation to elongation of neurite outgrowth. This study for the first time demonstrated that 5-HT has a critical role in phase-controlling mechanisms of neurite outgrowth in neuronal cell cultures.  相似文献   

5.
Growth cones of sympathetic neurons from the superior cervical ganglia of neonatal rats were studied using video-microscopy to determine events following contact between growth cones and other cell surfaces, including other growth cones and neurites. A variety of behaviors were observed to occur upon contact between growth cones. Most commonly, one growth cone would collapse and subsequently retract upon establishing filopodial contact with the growth cone of another sympathetic neuron. Contacts resulting in collapse and retraction were often accompanied by a rapid and transient burst of lamellipodial activity along the neurite 30-50 microns proximal to the retracting growth cone. In no instances did interactions between growth cones and either fibroblasts or red blood cells result in the growth cone collapsing, suggesting that a specific recognition event was involved. On several occasions, growth cones were seen to track other growth cones, although fasciculation was rare. In some cases, there was no obvious response between contacting growth cones. Growth cone-growth cone contact was almost four times more likely to result in collapse and retraction than was growth cone-neurite contact (45% vs 12%, respectively). These observations suggest that the superior cervical ganglion may be composed of neurons with different cell surface determinants and that these determinants are more concentrated on the surface of growth cones than on neurites. These results further suggest that contact-mediated inhibition of growth cone locomotion may play an important role in growth cone guidance.  相似文献   

6.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin-associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1-day-old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1-to 22-day-old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1- and 15-day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15-day cord overwhelmed permissive or growth promoting molecules in membranes from 1-day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth.  相似文献   

7.
Molecules and activities which repulse growing neurites or induce growth cone collapse and long-lasting growth inhibition have been defined over the last 10 years. Recently, specific guidance roles for developing axons and pathways could be associated with such repulsive effects. A high molecular weight membrane protein located in CNS myelin acts as potent neurite growth inhibitor and may play a role as a negative control element for sprouting, neurite growth and regeneration, and for the plasticity of the adult CNS. Interestingly, some guidance molecules can have positive, growth-promoting as well as negative, repulsive effects for specific types of neurons. These results underline the complex mechanisms involved in neurite guidance which depends on the interpretation of combinations of incoming signals by particular growth cones. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

8.
Corticospinal axon outgrowth in vivo and the ability to sprout or regenerate after injury decline with age. This developmental decline in growth potential has been correlated with an increase in inhibitory myelin‐associated proteins in older spinal cord. However, previous results have shown that sprouting of corticospinal fibers after contralateral lesions begins to diminish prior to myelination, suggesting that a decrease in growth promoting and/or an increase in inhibitory molecules in spinal gray matter may also regulate corticospinal axon outgrowth. To address this possibility, we carried out in vitro experiments to measure neurite outgrowth from explants of 1‐day‐old hamster forelimb sensorimotor cortex that were plated onto membrane carpets or membrane stripe assays prepared from white or gray matter of 1‐to 22‐day‐old cervical spinal cord. On uniform carpets and in the stripe assays cortical neurites grew robustly on young but not older membranes from both white and gray matter. Mixtures of membranes from 1‐ and 15‐day spinal cord inhibited neurite outgrowth, suggesting that the presence of inhibitory molecules in the 15‐day cord overwhelmed permissive or growth promoting molecules in membranes from 1‐day cord. Video microscopic observations of growth cone behaviors on membrane stripe assays transferred to glass coverslips supported this view. Cortical growth cones repeatedly collapsed at borders between permissive substrates (laminin or young membrane stripes) and nonpermissive substrates (older membrane stripes). Growth cones either turned away from the older membranes or reduced their growth rates. These results suggest that molecules in both the gray and white matter of the developing spinal cord can inhibit cortical neurite outgrowth. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 393–406, 1999  相似文献   

9.
I have compared central nervous system (CNS) neurite outgrowth on glial and nonglial cells. Monolayers of glial cells (astrocytes and Schwann cells) or nonglial cells (e.g., fibroblasts) were prepared and were shown to be greater than 95% pure as judged by cell type-specific markers. These monolayers were then tested for their ability to support neurite outgrowth from various CNS explants. While CNS neurites grew vigorously on the glial cells, most showed little growth on nonglial cell monolayers. Neurites grew singly or in fine fascicles on the glial cells at rates greater than 0.5 mm/d. The neurite outgrowth on astrocytes was investigated in detail. Scanning and transmission electron microscopy showed that the neurites were closely apposed to the astrocyte surface and that the growth cones were well spread with long filopodia. There was no evidence of significant numbers of explant- derived cells migrating onto the monolayers. Two types of experiments indicated that factors associated with the astrocyte surface were primarily responsible for the vigorous neurite outgrowth seen on these cells: (a) Conditioned media from either astrocytes or fibroblasts had no effect on the pattern of outgrowth on fibroblasts and astrocytes, and conditioned media factors from either cell type did not promote neurite outgrowth when bound to polylysine-coated dishes. (b) When growing CNS neurites encountered a boundary between astrocytes and fibroblasts, they stayed on the astrocytes and did not encroach onto the fibroblasts. These experiments strongly suggest that molecules specific to the surfaces of astrocytes make these cells particularly attractive substrates for CNS neurite outgrowth, and they raise the possibility that similar molecules on embryonic glial cells may play a role in guiding axonal growth during normal CNS development.  相似文献   

10.
《The Journal of cell biology》1994,127(5):1461-1475
The signaling mechanisms underlying neurite growth induced by cadherins and integrins are incompletely understood. In our experiments, we have examined these mechanisms using purified N-cadherin and laminin (LN). We find that unlike the neurite growth induced by fibroblastic cells expressing transfected N-cadherin (Doherty, P., and F.S. Walsh. 1992. Curr. Opin. Neurobiol. 2:595-601), growth induced by purified N- cadherin in chick ciliary ganglion (CG), sensory, or forebrain neurons is not sensitive to inhibition by pertussis toxin. Using fura-2 imaging of single cells, we show that soluble N-cadherin induces Ca2+ increases in CG neuron cell bodies, and, importantly, in growth cones. In contrast, N-cadherin can induce Ca2+ decreases in glial cells. N- cadherin-induced neuronal Ca2+ responses are sensitive to Ni2+, but are relatively insensitive to diltiazem and omega-conotoxin. Similarly, neurite growth induced by purified N-cadherin is inhibited by Ni2+, but is unaffected by diltiazem and conotoxin. Soluble LN also induced small Ca2+ responses in CG neurons. LN-induced neurite growth, like that induced by N-cadherin, is insensitive to diltiazem and conotoxin, but is highly sensitive to Ni2+ inhibition. K+ depolarization experiments suggest that voltage-dependent Ca2+ influx pathways in CG neurons (cell bodies and growth cones) are largely blocked by the combination of diltiazem and Ni2+. Our results demonstrate that cadherin signaling involves cell type-specific Ca2+ changes in responding cells, and in particular, that N-cadherin can cause Ca2+ increases in neuronal growth cones. Our findings are consistent with the current idea that distinct neuronal transduction pathways exist for cell adhesion molecules compared with integrins, but suggest that the involvement of Ca2+ signals in both of these pathways is more complex than previously appreciated.  相似文献   

11.
To assess the role of cdc42 during neurite development, cmyc-tagged constitutively active (CA) and dominant negative (DN) cdc42 were expressed in dissociated primary chick spinal cord neurons using adenoviral-mediated gene transfer. Three days after infection, >85% of the neurons in infected cultures expressed cdc42 proteins, as detected by indirect immunofluorescence against cmyc. Growth cones of infected neurons displayed 1.83- (CAcdc42) and 1.93-fold (DNcdc42) higher cmyc immunofluorescence per square micrometer than uninfected controls. CAcdc42 expression stimulated growth cones, almost doubling growth cone size and number of filopodia, and increased neurite growth rates by 65-89%. In neurons plated onto fibronectin, the percent of growth cones with both filopodia and lamellipodia increased from 71 to 92%. Total Texas Red-phalloidin staining in these growth cones doubled, and the percent of growth cones with F-actin localized to peripheral regions increased from 52% in controls to 78% after CAcdc42 expression. Expression of DNcdc42 did not significantly alter growth cone morphology or neurite growth rates. Addition of soluble laminin to spinal cord neurons resulted in the identical phenotype as CAcdc42 expression, including changes in growth cone morphology, F-actin localization, and neurite growth rates. Significantly, expression of DNcdc42 blocked the effects of laminin on growth cones. These results show that cdc42 promotes neurite outgrowth and filopodial and lamellipodial formation in growth cones and suggests that cdc42 and laminin share a common signaling pathway during neurite development. Addition of laminin to CAcdc42-expressing neurons is inhibitory to growth cones, indicating that laminin also may activate some other pathways.  相似文献   

12.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   

13.
The migration of neuronal growth cones, driving axon extension, is a fascinating process which has been subject of intense investigation over several decades. Many of the key underlying molecules, in particular adhesion proteins at the cell membrane which allow for target recognition and binding, and cytoskeleton filaments and motors which power locomotion, have been identified. However, the precise mechanisms by which growth cones coordinate, in time and space, the transmission of forces generated by the cytoskeleton to the turnover of adhesion proteins, are still partly unresolved. To get a better grasp at these processes, we put here in relation the turnover rate of ligand/receptor adhesions and the degree of mechanical coupling between cell adhesion receptors and the actin rearward flow. These parameters were obtained recently for N-cadherin and IgCAM based adhesions using ligand-coated microspheres in combination with optical tweezers and photo-bleaching experiments. We show that the speed of growth cone migration requires both a fairly rapid adhesion dynamics and a strong physical connection between adhesive sites and the cytoskeleton.  相似文献   

14.
In vivo, kinase C phosphorylation of the growth-associated protein GAP-43 is spatially and temproally associated with the proximity of growing axons to their targets. Here we have used dissociated dorsal root ganglia (DRG)s and an antibody specific for the phosphorylated form of GAP-43 to demonstrate that neurite regeneration in culture also begins in the absence of detectable levels of phosphorylated GAP-43. Since the β isoform of kinase C was found to be enriched in growth cones before stably phosphorylated GAP-43 was detected, it may normally be inactive during initial neurite outgrowth; however, premature phosphorylation of GAP-43 could be stimulated in newly dissociated DRGs by plating them on cultures in which phosphorylation had already been initiated; media conditioned by such cultures caused no response suggesting an effect of either cell-cell or cell-substrate contact. Increased GAP-43 phosphorylation correlated with a reduced extent of neurite outgrowth but not with the rate at which individual growth cones translocated so that motile growth cones contained very low levels of phosphorylated GAP-43, whereas stationary growth cones showed much more immunoreactivity. Downregulation of kinase C by phorbol ester prevented increased GAP-43 phosphorylation and led to growth cone collapse. Finally, phosphorylated GAP-43 was found to be differently distributed within growth cones. Increased immunoreactivity was frequently observed in the neck of the growth cone and was heterogeneously distributed in lamellae and filopodia. These results, which demonstrate the dynamic regulation of GAP-43 phosphorylation in individual growth cones, are discussed with reference to the association between changes in growth cone shape and the ability to translocate and change direction. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
The actin-based cytoskeleton is essential for the generation and maintenance of cell polarity, cellular motility, and the formation of neural cell processes. MRP2 is an actin-binding protein of the kelch-related protein family. While MRP2 has been shown to be expressed specifically in brain, its function is still unknown. Here, we report that in neuronal growth factor (NGF)-induced PC12 cells, MRP2 was expressed along the neurite processes and colocalized with Talin at the growth cones. MRP2 mRNA and protein levels were up-regulated in PC12 cells following NGF stimulation. Moreover, treatment of PC12 cells with interfering RNAs for MRP2 and glycogen synthase kinase 3beta (GSK3beta) resulted in the inhibition of neurite outgrowth. A significant decrease in MRP2 expression levels was observed following GSK3beta inhibition, which was correlated with the inhibited neurite outgrowth, while GSK3beta overexpression was found to increase MRP2 expression levels. MRP2 interacted with GSK3beta through its NH2 terminus containing the BTB domain, and these molecules colocalized along neurite processes and growth cones in differentiated PC12 cells and rat primary hippocampal neurons. Additionally, increased associations of MRP2 with GSK3beta and MRP2 with actin were observed in the NGF-treated PC12 cells. Thus, this study provides, for the first time, insights into the involvement of MRP2 in neurite outgrowth, which occurs in a GSK3beta-dependent manner.  相似文献   

16.
In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin–radixin or ezrin–moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin–moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8–10 times slower than the one of growth cones from control neurons. Radixin–moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity.  相似文献   

17.
Lee SH 《Molecules and cells》2005,20(2):256-262
The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-beta-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, beta-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.  相似文献   

18.
Protein tyrosine kinases (PTKs) have major roles in signal transduction and growth control. There are several lines of evidence implicating PTKs in the regulation of axon growth, and this has led to the suggestion that they are centrally involved in the transduction of neuronal growth signals. To test this idea, we assayed the effect of the compounds genistein and lavendustin, specific inhibitors of PTKs, on neurite growth. We find that genistein greatly reduces phosphotyrosine in neurons, as expected from its action on other cells. Surprisingly, administration of genistein or lavendustin potentiated substrate-induced neurite growth in at least several different neuronal types. Stimulation of neurite growth by genistein was abolished by vanadate, providing additional evidence that inhibition of PTKs is responsible for this effect. The potentiation of growth is rather general, in that it occurs on several different extracellular matrix substrates and on two different cell adhesion molecules. Both the initiation of neurite growth and the rate of neurite elongation appear to be potentiated. Our results do not provide evidence for models of substrate-induced signal transduction that involve PTKs as a positive and necessary step, but suggest that such kinases play a regulatory role in neurite elongation.  相似文献   

19.
The fan-shaped array of filopodia is the first site of contact of a neuronal growth cone with molecules encountered during neuronal pathfinding. Filopodia are highly dynamic structures, and the “action radius” of a growth cone is strongly determined by the length and number of its filopodia. Since interactions of filopodia with instructive cues in the vicinity of the growth cone can have effects on growth cone morphology within minutes, it has to be assumed that a large part of the signaling underlying such morphological changes resides locally within the growth cone proper. In this study, we tested the hypothesis that two important growth cone parameters namely, the length and number of its filopodiaare regulated autonomously in the growth cone. We previously demonstrated in identified neurons from the snail Helisoma trivolvis that filopodial length and number are regulated by intracellular calcium. Here, we investigated filopodial dynamics and their regulation by the second-messenger calcium in growth cones which were physically isolated from their parent neuron by neurite transection. Our results show that isolated growth cones have longer but fewer filopodia than growth cones attached to their parent cell. These isolated growth cones, however, are fully capable of undergoing calcium-induced cytoskeletal changes, suggesting that the machinery necessary to perform changes in filopodial length and number is fully intrinsic to the growth cone proper. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 179–192, 1998  相似文献   

20.
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolishes RhoA-mediated functions such as neurite retraction. The C3 response was inhibited by coinjection with the dominant negative mutant Cdc42Hs(T17N), while the Cdc42Hs response could be competed by coinjection with RhoA. We also demonstrate that the neurotransmitter acetylcholine (ACh) can induce filopodia and lamellipodia on neuroblastoma growth cones via muscarinic ACh receptor activation, but only when applied in a concentration gradient. ACh-induced formation of filopodia and lamellipodia was inhibited by preinjection with the dominant negative mutants Cdc42Hs(T17N) and Rac1(T17N), respectively. Lysophosphatidic acid (LPA)-induced neurite retraction, which is mediated by RhoA, was inhibited by ACh, while C3 exoenzyme-mediated neurite outgrowth was inhibited by injection with Cdc42Hs(T17N) or Rac1(T17N). Together these results suggest that there is competition between the ACh- and LPA-induced morphological pathways mediated by Cdc42Hs and/or Rac1 and by RhoA, leading to either neurite development or collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号