首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Arthrobacter sp. and a Bacillus sp., isolated from a long-term tannery waste contaminated soil, were examined for their tolerance to hexavalent chromium [Cr(VI)] and their ability to reduce Cr(VI) to Cr(III), a detoxification process in cell suspensions and cell extracts. Both bacteria tolerated Cr(VI) at 100 mg/ml on a minimal salts agar medium supplemented with 0.5% glucose, but only Arthrobacter could grow in liquid medium at this concentration. Arthrobacter sp. could reduce Cr(VI) up to 50 μg/ml, while Bacillus sp. was not able to reduce Cr(VI) beyond 20 μg/ml. Arthrobacter sp. was distinctly superior to the Bacillus sp. in terms of their Cr(VI)-reducing ability and resistance to Cr(VI). Assays with permeabilized (treated with toluene or Triton X 100) cells and crude extracts demonstrated that the Cr(VI) reduction was mainly associated with the soluble protein fraction of the cell. Arthrobacter sp. has a great potential for bioremediation of Cr(VI)-containing waste. Received: 13 June 2002 / Accepted: 13 September 2002  相似文献   

2.
Cyclohexanone monooxygenase (CHMO), a type of Baeyer-Villiger oxidation, catalyzes the oxidation of cyclohexanone into ɛ-caprolactone, which has been utilized as a building block in organic synthesis. A bacterium that is capable of growth on cyclohexanone as a sole carbon source was recently isolated and was identified as Arthrobacter sp. L661. The strain is believed to harbor a CHMO gene (chnB), considering the high degradablity of cyclohexanone. In order to characterize the CHMO, a chnB gene was cloned from Arthrobacter sp. L661. The deduced amino acids of the chnB gene evidenced the highest degree of homology (90% identity) with the CHMO of Arthrobacter sp. BP2 (accession no. AY123972). The CHMO of L661 was shown to be functionally expressed in Escherichia coli cells, purified via affinity chromatography, and characterized. The specific activity of the purified enzyme was 24.75 μmol/min/mg protein. The optimum pH was 7.0 and the enzyme maintained over 70% of its activity for up to 24 h in a pH range of 6.0 to 8.0 at 4°C. The CHMO of L661 readily oxidized cyclobutanone and cyclopentanone whereas less activity was detected with those of Arthrobacter sp. BP2, Rhodococcus sp. Phi1, and Rhodococcus sp. Phi2, thereby suggesting that the CHMO of L661 evidenced the different substrate specificities compared with other CHMOs. These results can provide us with useful information for the development of biocatalysts applicable to commercial organic syntheses, especially because only a few CHMO genes have been identified thus far.  相似文献   

3.
Arthrobacter sp. strain MIS38 was transformed with a shuttle vector containing the kanamycin resistant genekan (derived from Tn5) by an electroporation method. This shuttle vector is fromBrevibacterium lactofermentum andEscherichia coli, pULRS8: - The following optimal condition of electroporation was determined. A square wave pulse of 1 kV/cm electric field strength for 0.5 ms duration yielded 3 × 105 transformants/,g plasmid DNA. The number of transformants increased with the amount of DNA over the range 0.01-5 g. This host-vector system was then used successfully to clone and express a lipase gene fromArthrobacter sp. strain MIS38 into bothArthrobacter sp. MIS38 and E. coli JM109.  相似文献   

4.
Arthrobacter sp. KNK168 shows (R)-enantioselective transaminase [(R)-transaminase] activity, which converts prochiral ketones into the corresponding chiral (R)-amines in the presence of an amino donor. The cultural conditions and reaction conditions for asymmetric synthesis of chiral amines with this microorganism were examined. The transaminase was inducible, and its production was enhanced by the addition of sec-butylamine and 3-amino-2,2-dimethylbutane to the culture medium. (R)-1-Phenylethylamine was a good amino donor for amination of 3,4-dimethoxyphenylacetone with Arthrobacter sp. KNK168. Under the optimum conditions, 126 mM (R)-3,4-dimethoxyamphetamine (DMA) [>99% enantiomeric excess (ee)] was synthesized from 154 mM 3,4-dimethoxyphenylacetone and 154 mM (R)-1-phenylethylamine through the whole cell reaction with an 82% conversion yield. (R)-Enantiomers of other amines, such as (R)-4-methoxyamphetamine, (R)-1-(3-hydroxyphenyl)ethylamine and (R)-1-(3-hydroxyphenyl)ethylamine, were also synthesized from the corresponding carbonyl compounds through asymmetric amination with Arthrobacter sp. KNK168.  相似文献   

5.
SYNOPSIS. Turbidity changes caused by ingestion of bacterial cell suspensions by Tetrahymena pyriformis W were used to measure feeding capabilities. Tetrahymena was grown on washed killed cells of Aerobacter aerogenes, Azotobacter agile, Arthrobacter sp., Bacillus megaterium, Mycobacterium lacticola, Pseudomonas fragi, Sarcinia lutea, Serratia marcescens, and Thiobacillus thioparus for 6 months with serial transfers. After this time the rate of feeding on each bacterium gave no indication of an adaptation to the food bacterium.  相似文献   

6.
The 4-hydroxyacetophenone assimilating bacterium Arthrobacter sp. TGJ4 was isolated from a soil sample. The resting cell reaction suggested that the strain cleaved 4-hydroxyacetophenone and its 3-methoxy derivative to the corresponding carboxylic acids and formaldehyde. Some properties of the enzyme catalyzing the cleavage reaction were examined.  相似文献   

7.
Two hydrocarbon-degrading bacterial isolates, an Arthrobacter sp. and a Gram-negative bacillus isolated from Kuwait oil lakes, exhibited considerable cell-surface hydrophobicity without production of exopolysaccharides in complex media. However, the bacteria produced copious amounts of exopolysaccharides in a low nutrient medium. When incubated with sawdust, Styrofoam or wheat bran, as carriers, under low nutrient conditions, stable exopolysaccharide-mediated immobilized cultures were formed. Such immobilized cultures when air-dried at room temperature survived storage for 6 weeks at 45 °C and still retained the ability to degrade hydrocarbons. Viability was retained by the immobilized Arthrobacter sp. and the Gram-negative bacterium at 45 °C storage for up to 6 and 12 months, respectively.  相似文献   

8.
The increasing production of several plastics such as expanded polystyrene, widely used as packaging and building materials, has caused the release of considerable amounts of pentane employed as an expanding agent. Today many microorganisms are used to degrade hydrocarbons in order to minimize contamination caused by several industrial activities. The aim of our work was to identify a suitable microorganism to degrade pentane. We focused our attention on a strain of Arthrobacter sp. which in a shake-flask culture produced 95% degradation of a 10% mixture of pentane in a minimal medium after 42days of incubation at 20°C. Arthrobacter sp. cells were immobilized on a macroporous polystyrene particle matrix that provides a promising novel support for cell immobilization. The method involved culturing cells with the expanded polystyrene in shake-flasks, followed by in situ growth within the column. Scanning electron microscopy analysis showed extensive growth of Arthrobacter sp. on the polymeric surface. The immobilized microorganism was able to actively degrade a 10% mixture of pentane, allowing us to obtain a bioconversion yield of 90% after 36h. Moreover, in repeated-batch operations, immobilized Arthrobacter sp. cells were able to maintain 85–95% pentane degradation during a 2month period. Our results suggest that this type of bioreactor could be used in pentane environmental decontamination.  相似文献   

9.
The dominant bacteriaPseudomonas sp. andArthrobacter sp. were isolated from the standing water of carbofuran-retreatedAzolla plot.Arthrobacter sp. hydrolysed carbofuran added to the mineral salts medium as a sole source of carbon and nitrogen while no degradation occurred withPseudomonas sp. Interestingly, when the medium containing carbofuran was inoculated with bothArthrobacter sp. andPseudomonas sp., a synergistic increase in its hydrolysis and subsequent release of CO2 from the side chain was noticed. This synergistic interaction was better expressed at 25° C than at 35° C. Likewise, related carbamates, carbaryl, bendiocarb and carbosulfan were more rapidly degraded in the combined presence of both bacterial isolates.  相似文献   

10.
A bacterium, PG-3-2, capable of butane-utilization as a sole carbon source was isolated from Puguang oilfield in Sichuan Province, China and identified as Arthrobacter sp. by 16S rRNA gene sequence and morphology characteristics. Butane-saturated medium was defined as optimal for the growth of PG-3-2. Proliferation of PG-3-2 was enhanced at low butanol concentrations (≤50 mM) and repressed at high concentrations (≥100 mM). Growth of strain PG-3-2 was supported by alkanes from C2 to C10 (except pentane) and various carbon substrates including primary alcohols, secondary alcohols, carboxylic acids, aldehydes, ketones, but not methane or its oxidation products. The rate of butane degradation by PG-3-2 was relatively high during the lag phase and prophase of the exponential phase. A bmoX gene, which encodes the alpha hydroxylase subunit of butane monooxygenase, was amplified from the genome of this bacterium. Sequence analysis revealed a high level of homology with alkane monooxygenase, thus indicating the existence of a novel bmoX gene involved in the butane degradation pathway in this Arthrobacter strain.  相似文献   

11.
A new bacterium capable of growing on 2-hydroxypyridine as sole source of carbon and nitrogen was isolated from soil. During its growth on solid medium, approximately 50% of this substrate was converted to a brilliant blue crystalline pigment which was deposited extracellularly in the colony mass. The pigment was identical to that produced byArthrobacter crystallopoietes during its growth on 2-hydroxypyridine. The new isolate exhibited the typical cycle of morphogenesis characteristic of the genusArthrobacter. The organism is different from all other reported species ofArthrobacter. It is proposed that the organism be namedArthrobacter pyridinolis n. sp.List of Abbreviations MSP mineral salts phosphate basal culture medium containing 2-hydroxypyridine, yeast extract and trace salts - 2-HP 2-hydroxypyridine - PFU plaque forming units - G+C guanine+cytosine - T m midpoint of thermal denaturation  相似文献   

12.
The substrate specificity of isomerases produced by six strains ofArthrobacter sp. was studied. The role of utilizable carbon sources in controlling enzyme biosynthesis was established. All of the strains studied were found to produce xylose isomerases efficiently, converting D-xylose into D-xylulose and D-glucose into D-fructose. All but A.ureafaciens B-6 strains showed low activity toward D-ribose,Arthrobacter sp. B-5 was slightly active toward L-arabinose, andA. ureafaciens B-6 andArthrobacter sp. B-2239, toward L-rhamnose. InArthrobacter sp. B-5, the synthesis of xylose/glucose isomerase was constitutive (i.e., it was not suppressed by readily metabolizable carbon sources. The synthesis of xylose/glucose isomerase induced by D-xylose inArthrobacter sp. strains B-2239, B-2240, B-2241, and B-2242 and by D-xylose and xylitol inA. ureafaciens B-6 was suppressed by readily metabolizable carbon sources in a concentration-dependent manner. The data obtained suggest that D-xylose and/or its metabolites are involved in the regulation of xylose/glucose isomerase synthesis in theArthrobacter sp. strains B-5, B-2239, B-2240, and B-2241.  相似文献   

13.
A levoglucosan (1,6-anhydro-β-D-glucopyranose)-using bacterium, isolated from soil, was identified. It was shown to belong to the genus Arthrobacter and tentatively named Arthrobacter sp. I-552. A novel enzyme catalyzed the dehydrogenation of levoglucosan to form 1,6-anhydro-β-D-ribo-hexopyranos-3-ulose (3-keto levoglucosan), using NAD+ as an electron acceptor, i.e. NAD+: 1,6-anhydro-β-D-glucopyranose oxidoreductase (trivial name: levoglucosan dehydrogenase). This enzyme was purified and characterized. A possible reaction scheme for the glucose formation was proposed. This pathway for levoglucosan use is distinct from those in yeast and fungi.  相似文献   

14.
Inulin fructotransferase (IFTase, EC 2.4.1.93) of Arthrobacter sp. A-6 was purified from a cell extract of the recombinant Escherichia coli DH5 /pDFE cells carrying the IFTase gene using heat treatment followed by gel filtration. The enzyme was purified 45-fold to apparent homogeneity with a recovery of 79%. SDS-PAGE yielded a single protein band of M r 46.5 kDa. The recombinant IFTase had a similar thermostability as the original enzyme from Arthrobacter sp. A-6.  相似文献   

15.
This study reports the influence of Mg ions on the development and architecture of biofilms by a chromium resistant and reducing bacterium Arthrobacter sp. SUK 1201 and their utilization in the removal of toxic hexavalent chromium. Among the different metal ions tested, Mg(II) greatly influenced the biofilm growth in peptone yeast extract glucose medium. Both Scanning and Confocal Laser Scanning Microscopy revealed that biofilms formed under the induction of Mg(II) had characteristic higher cell densities. The cells remain embedded in thick porous layers of extracellular polymeric substances as evident from the fluorescein isothiocyanate labeled lectin concanavalin A and 4, 6- diamino-2-phenylindole staining. COMSTAT analysis also indicated maximum thickness and roughness coefficient of the biofilm grown in presence of Mg(II). Biofilms of Arthrobacter sp. SUK 1201 developed under such Mg (II) influenced condition showed complete removal of 0.5 mM Cr(VI) in mineral salts medium. The biofilm of this isolate grown in presence of Mg(II) was also able to remove 60µM Cr(VI) from mine seepage water suggesting its possible implication in effective bioremediation of chromium polluted environments.  相似文献   

16.
Arthrobacter sp. strain TB23 was isolated from the Antarctic sponge Lissodendoryx nobilis. This bacterium is able to produce antimicrobial compounds and volatile organic compounds (VOCs) that inhibit the growth of other Antarctic bacteria and of cystic fibrosis opportunistic pathogens, respectively. Here we report the draft genome sequence of Arthrobacter sp. TB23.  相似文献   

17.
18.
Culture-based analysis was employed in parallel with PCR amplification of 16S rDNA, coupled with denaturing gradient gel electrophoresis (DGGE), to profile bacterial species associated with different developmental stages of the pine false webworm (PFW), Acantholyda erythrocephala, a sawfly pest responsible for incidents of severe defoliation in commercially important tree plantations in North America. Culture-based analysis revealed that Pseudomonas spp. along with Bacillus sphaericus and Arthrobacter sp. were the predominant components of the microflora of the internal organs and identified life-stage-specific associations including Photorhabdus temperata with egg and larval samples and a Janthinobacterium sp. with eonymphs. PCR-DGGE confirmed the predominance of Pseudomonas spp. and B. sphaericus in the majority of samples but did not detect Arthrobacter sp., P. temperate, or Janthinobacterium sp. In contrast, DGGE revealed the presence of a Chryseobacterium sp. as the predominant component of the PFW micoflora at all life stages, with the exception of adults. This species had been infrequently cultured, at low levels, from a limited number of samples and the existence of a possible relationship between this bacterium and the PFW had gone unnoticed using the culture-based approach. Our findings highlight the advantages of applying a dual approach to the study of microbe-insect associations and demonstrate that the benefits of one system can be used to overcome some of the limitations of the other.  相似文献   

19.
A gram-negative bacterium strongly lytic toward living cells of the food yeast Saccharomyces fragilis was isolated by continuous-flow enrichment from compost. The organism was identified as a species of Arthrobacter. The extracellular lytic enzyme complex produced by this bacterium contained β-1,3-glucanase, mannan mannohydrolase, and proteolytic activities. The polysaccharases were inducible by whole yeast cells. In chemostat cultures on chemically defined media, synthesis of the polysaccharases was very slight and only detectable at dilution rates below 0.02 hr?1. Enzyme production in defined media was not solely dependent on growth rate but also was influenced by the growth limiting substrate and the culture history. The production of individual depolymerases and of the lytic activity was studied in batch and chemostat cultures containing yeast as the limiting substrate. The maximum specific growth rate of the Arthrobacter under these conditions was 0.22 hr?1. β-1,3-Glucanase and proteolytic activities were synthesized by exponentially growing bacteria but maximum lytic titers did not develop until the specific growth rate was declining, at which time mannan mannohydrolase syntheses was induced. In yeast limited chemostats polysaccharase syntheses were greatest at the lowest dilution rates examined, namely 0.02 hr?1. Further optimization of enzyme production was achieved by feeding the Arthrobacter culture to a second-stage chemostat. A comparison of lytic enzyme productivities in batch and chemostat cultures has been made.  相似文献   

20.
Two bacterial strains, the natural isolate Arthrobacter sp. FG1 and the engineered strain Pseudomonas putida PaW340/pDH5, were compared for their efficiency in the degradation of 4-chlorobenzoic acid in a slurry phase system. The recombinant strain was obtained by cloning the Arthrobacter sp. FG1 dehalogenase encoding genes in P. putida PaW340. In the slurry inoculated with pre-adapted cultures of Arthrobacter sp. FG1, the 4-chlorobenzoic acid degradation was found to be slower than that observed in the slurry inoculated with the recombinant strain P. putida PaW340/pDH5, regardless of the presence or absence of soil indigenous bacteria. Slurry inoculated with mixed cultures of Arthrobacter sp. FG1 and the 4-hyroxybenzoic acid degrader P. putida PaW340 did not show any improvement in 4-chlorobenzoic acid degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号