首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
This article reviews technical and conceptual advances in unravelling the molecular bases of long-term potentiation (LTP), learning and memory using genetic approaches. We focus on studies aimed at testing a model suggesting that protein kinases and protein phosphatases balance each other to control synaptic strength and plasticity. We describe how gene 'knock-out' technology was initially exploited to disrupt the Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) gene and how refined knock-in techniques later allowed an analysis of the role of distinct phosphorylation sites in CaMKII. Further to gene recombination, regulated gene expression using the tetracycline-controlled transactivator and reverse tetracycline-controlled transactivator systems, a powerful new means for modulating the activity of specific molecules, has been applied to CaMKIIalpha and the opposing protein phosphatase calcineurin. Together with electro-physiological and behavioural evaluation of the engineered mutant animals, these genetic methodologies have helped gain insight into the molecular mechanisms of plasticity and memory. Further technical developments are, however, awaited for an even higher level of finesse.  相似文献   

2.
Chen XH  Shu SY 《生理科学进展》2004,35(2):173-176
钙神经素 (calcineurin ,CN)是一种钙依赖的蛋白磷酸酶 ,其催化亚基的基因编码具严格保守性。近年来研究证明其在学习和记忆中有重要作用 ,参与了大脑神经元突触效应的去增强、多种不同机制的长时程抑制 (LTD)、长时程增强 (LTP)、认知记忆、短期记忆向长期记忆的转换、脑老化等过程。深入研究CN参与学习和记忆的机制及其与记忆减退性疾病的关系 ,具有重要理论与实践意义  相似文献   

3.
Li Y  Tan Z  Li Z  Sun Z  Duan S  Li W 《Bioscience reports》2012,32(3):315-321
xCT is the functional subunit of the cystine/glutamate antiporter system xc-, which exchanges intracellular glutamate with extracellular cystine. xCT has been reported to play roles in the maintenance of intracellular redox and ambient extracellular glutamate, which may affect neuronal function. To assess a potential role of xCT in the mouse hippocampus, we performed fear conditioning and passive avoidance for long-term memories and examined hippocampal synaptic plasticity in wild-type mice and xCT-null mutants, sut mice. Long-term memory was impaired in sut mice. Normal basal synaptic transmission and short-term presynaptic plasticity at hippocampal Schaffer collateral-CA1 synapses were observed in sut mice. However, LTP (long-term potentiation) was significantly reduced in sut mice compared with their wild-type counterparts. Supplementation of extracellular glutamate did not reverse the reduction in LTP. Taken together, our results suggest that xCT plays a role in the modulation of hippocampal long-term plasticity.  相似文献   

4.
Separate and joint effect of Semax, ascorbic acid, lead diacetate, and ammonium molybdate on avoidance conditioning in rats was studied. It was established that the heavy metal salts inhibited the avoidance response, and the peptide counteracted this inhibition as strongly as ascorbic acid or to a comparable degree. These findings confirm the antioxidant properties of Semax.  相似文献   

5.
In earlier studies we have shown that a protein-synthesis-independent, early, long-term potentiaton (early-LTP) that lasts up to 4-5 hours can be transformed (reinforced) into a protein-synthesis-dependent late-LTP that lasts > or = 8 hours by either an emotional challenge (e.g. swim stress) or mastering a cognitive task (e.g. spatial learning). In the present study we show that LTP-reinforcement by spatial training depends on the specific constraints of the learning paradigm. In a holeboard paradigm,LTP-reinforcement is related to the formation of a lasting reference memory whereas water-maze training gives more heterogenous results. Thus, cognitive aspects interfere with emotionally challenging components of the latter paradigm. These data indicate that different spatial-learning tasks are weighted distinctly by the animal. Thus, we show that aspects of specific spatial learning paradigms such as shifts of attention and emotional content directly influence functional plasticity and memory formation.  相似文献   

6.
Considerable evidence now suggests an interrelationship among long-term potentiation (LTP), extracellular matrix (ECM) reconfiguration, synaptogenesis, and memory consolidation within the mammalian central nervous system. Extracellular matrix molecules provide the scaffolding necessary to permit synaptic remodeling and contribute to the regulation of ionic and nutritional homeostasis of surrounding cells. These molecules also facilitate cellular proliferation, movement, differentiation, and apoptosis. The present review initially focuses on characterizing the ECM and the roles of cell adhesion molecules (CAMs), matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), in the maintenance and degradation of the ECM. The induction and maintenance of LTP is described. Debate continues over whether LTP results in some form of synaptic strengthening and in turn promotes memory consolidation. Next, the contribution of CAMs and TIMPs to the facilitation of LTP and memory consolidation is discussed. Finally, possible roles for angiotensins, MMPs, and tissue plasminogen activators in the facilitation of LTP and memory consolidation are described. These enzymatic pathways appear to be very important to an understanding of dysfunctional memory diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and infections.  相似文献   

7.
Wu LJ  Ren M  Wang H  Kim SS  Cao X  Zhuo M 《PloS one》2008,3(1):e1407
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.  相似文献   

8.
Voltage-dependent N-type Ca(2+) channels, along with the P/Q-type, have a crucial role in controlling the release of neurotransmitters or neuromodulators at presynaptic terminals. However, their role in hippocampus-dependent learning and memory has never been examined. Here, we investigated hippocampus-dependent learning and memory and synaptic plasticity at hippocampal CA3-CA1 synapses in mice deficient for the alpha(1B) subunit of N-type Ca(2+) channels. The mutant mice exhibited impaired learning and memory in the Morris water maze and the social transmission of food preference tasks. In particular, long-term memory was impaired in the mutant mice. Interestingly, among activity-dependent long-lasting synaptic changes, theta burst- or 200-Hz-stimulation-induced long-term potentiation (LTP) was decreased in the mutant, compared with the wild-type mice. This type of LTP is known to require brain-derived neurotrophic factor (BDNF). It was found that both BDNF-induced potentiation of field excitatory postsynaptic potentials and facilitation of the frequency of miniature excitatory postsynaptic currents (mEPSCs) were reduced in the mutant. Taken together, these results demonstrate that N-type Ca(2+) channels are required for hippocampus-dependent learning and memory, and certain forms of LTP.  相似文献   

9.
Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin receptors are found in the hippocampus, and both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines that modulate long-term potentiation (LTP) in the hippocampus. We therefore examined the effect of leptin on (1) behavioral performance in emotional and spatial learning tasks, (2) LTP at Schaffer collateral-CA1 synapses, (3) presynaptic and postsynaptic activities in hippocampal CA1 neurons, (4) the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 neurons, and (5) the activity of Ca(2+)/calmodulin protein kinase II (CaMK II) in the hippocampal CA1 tissue that exhibits LTP. Intravenous injection of 5 and/or 50mug/kg, but not of 500mug/kg leptin, facilitated behavioral performance in passive avoidance and Morris water-maze tasks. Bath application of 10(-12)M leptin in slice experiments enhanced LTP and increased the presynaptic transmitter release, whereas 10(-10)M leptin suppressed LTP and reduced the postsynaptic receptor sensitivity to N-methyl-d-aspartic acid. The increase in the [Ca(2+)](i) induced by 10(-10)M leptin was two times greater than that induced by 10(-12)M leptin. In addition, the facilitation (10(-12)M) and suppression (10(-10)M) of LTP by leptin was closely associated with an increase and decrease in Ca(2+)-independent activity of CaMK II. Our results show that leptin not only affects hypothalamic functions (such as feeding, thermogenesis, and neuroendocrine status), but also modulates higher nervous functions, such as the behavioral performance related to learning and memory and hippocampal synaptic plasticity.  相似文献   

10.
Brevican is a brain-specific proteoglycan which is found in specialized extracellular matrix structures called perineuronal nets. Brevican increases the invasiveness of glioma cells in vivo and has been suggested to play a role in central nervous system fiber tract development. To study the role of brevican in the development and function of the brain, we generated mice lacking a functional brevican gene. These mice are viable and fertile and have a normal life span. Brain anatomy was normal, although alterations in the expression of neurocan were detected. Perineuronal nets formed but appeared to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect. Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles.  相似文献   

11.
12.
The review analyzes the fundamental problem of study of the neuronal mechanisms underlying processes of learning and memory. As a neuronal model of these phenomena there was considered one of the cellular phenomena that has characteristics similar with those in the process of “memorizing”—such as the long-term potentiation (LTP). LTP is easily reproduced in certain synapses of the central nervous system, specifically in synapses of hippocampus and amygdala. As the behavioral model of learning, there was used the conditioned learning, in frames of which production of the context-dependent/independent conditioned reaction was considered. Analysis of literature data showed that various stages of LTP produced on synapses of hippocampus or amygdala can be comparable with certain phases of the process of learning. Based on the exposed material the authors conclude that plastic changes of synapses of hippocampus and amygdala can represent the morphological substrate of some kinds of learning and memory.  相似文献   

13.
Smolen P 《PloS one》2007,2(5):e445
Late long-term potentiation (L-LTP) denotes long-lasting strengthening of synapses between neurons. L-LTP appears essential for the formation of long-term memory, with memories at least partly encoded by patterns of strengthened synapses. How memories are preserved for months or years, despite molecular turnover, is not well understood. Ongoing recurrent neuronal activity, during memory recall or during sleep, has been hypothesized to preferentially potentiate strong synapses, preserving memories. This hypothesis has not been evaluated in the context of a mathematical model representing ongoing activity and biochemical pathways important for L-LTP. In this study, ongoing activity was incorporated into two such models - a reduced model that represents some of the essential biochemical processes, and a more detailed published model. The reduced model represents synaptic tagging and gene induction simply and intuitively, and the detailed model adds activation of essential kinases by Ca(2+). Ongoing activity was modeled as continual brief elevations of Ca(2+). In each model, two stable states of synaptic strength/weight resulted. Positive feedback between synaptic weight and the amplitude of ongoing Ca(2+) transients underlies this bistability. A tetanic or theta-burst stimulus switches a model synapse from a low basal weight to a high weight that is stabilized by ongoing activity. Bistability was robust to parameter variations in both models. Simulations illustrated that prolonged periods of decreased activity reset synaptic strengths to low values, suggesting a plausible forgetting mechanism. However, episodic activity with shorter inactive intervals maintained strong synapses. Both models support experimental predictions. Tests of these predictions are expected to further understanding of how neuronal activity is coupled to maintenance of synaptic strength. Further investigations that examine the dynamics of activity and synaptic maintenance can be expected to help in understanding how memories are preserved for up to a lifetime in animals including humans.  相似文献   

14.
Whole brain radiation therapy (WBRT) is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia) or 21% oxygen (normoxia) for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.  相似文献   

15.
Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.  相似文献   

16.
Word learning is studied in a multitude of ways, and it is often not clear what the relationship is between different phenomena. In this article, we begin by outlining a very simple functional framework that despite its simplicity can serve as a useful organizing scheme for thinking about various types of studies of word learning. We then review a number of themes that in recent years have emerged as important topics in the study of word learning, and relate them to the functional framework, noting nevertheless that these topics have tended to be somewhat separate areas of study. In the third part of the article, we describe a recent computational model and discuss how it offers a framework that can integrate and relate these various topics in word learning to each other. We conclude that issues that have typically been studied as separate topics can perhaps more fruitfully be thought of as closely integrated, with the present framework offering several suggestions about the nature of such integration.  相似文献   

17.
Reversible inhibition, irreversible inhibition, and activation of calf intestinal alkaline phosphatase (EC 3.1.3.1) have been studied by capillary electrophoresis. The capillary electrophoretic enzyme-inhibitor assays were based on electrophoretic mixing of inhibitor and enzyme zones in a substrate-filled capillary. Enzyme inhibition was indicated by a decrease in product formation detected in the capillary by laser-induced fluorescence. Reversible enzyme inhibitors could be quantified by Michaelis-Menten treatment of the electrophoretic data. Reversible, competitive inhibition of alkaline phosphatase by sodium vanadate and sodium arsenate has been examined, and reversible, noncompetitive inhibition by theophylline has been studied. The K(i) values determined for these reversible inhibitors using capillary electrophoresis are within the range of values reported in the literature for the same enzyme-inhibitor combinations. Irreversible inhibition of alkaline phosphatase by EDTA at concentrations of 1.0mM and above has been observed. Activation of alkaline phosphatase has also been observed for EDTA at concentrations from 20 to 400 microM.  相似文献   

18.
Huang CS  Shi SH  Ule J  Ruggiu M  Barker LA  Darnell RB  Jan YN  Jan LY 《Cell》2005,123(1):105-118
Synaptic plasticity, the cellular correlate for learning and memory, involves signaling cascades in the dendritic spine. Extensive studies have shown that long-term potentiation (LTP) of the excitatory postsynaptic current (EPSC) through glutamate receptors is induced by activation of N-methyl-D-asparate receptor (NMDA-R)--the coincidence detector--and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Here we report that the same signaling pathway in the postsynaptic CA1 pyramidal neuron also causes LTP of the slow inhibitory postsynaptic current (sIPSC) mediated by metabotropic GABA(B) receptors (GABA(B)-Rs) and G protein-activated inwardly rectifying K(+) (GIRK) channels, both residing in dendritic spines as well as shafts. Indicative of intriguing differences in the regulatory mechanisms for excitatory and inhibitory synaptic plasticity, LTP of sIPSC but not EPSC was abolished in mice lacking Nova-2, a neuronal-specific RNA binding protein that is an autoimmune target in paraneoplastic opsoclonus myoclonus ataxia (POMA) patients with latent cancer, reduced inhibitory control of movements, and dementia.  相似文献   

19.
突触长时程增强形成与学习记忆的相关研究   总被引:4,自引:0,他引:4  
突触长时程增强(LTP)的形成与学习记忆有相似特征,将其作为记忆的一种模式加以研究,并深入探索LTP机制产生与静止突触的关系,长时程突触修饰与突触后神经细胞内Ca^2 的作用机制,学习行为后海马内出现的突触效能变化与行为学习之间的关系,以及BDNF对海马突触的LTP调节与长时记忆所涉及关于LTP的相关基因表达。  相似文献   

20.
Long-Term Potentiation (LTP) has three properties: (1) input specificity, (2) cooperativity and (3) associativity. In a previous paper, we proposed an integrated model of the mechanisms of the induction and maintenance of LTP with input specificity. In this paper, a model of the mechanism of cooperative and associative LTP is described. According to computer simulations of the model, its mechanism is based on the spread of synaptic potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号