首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Kim DI  Lim SK  Park MJ  Han HJ  Kim GY  Park SH 《Life sciences》2007,80(7):626-632
Glucose transporters have been reported to be associated with the development of diabetic retinopathy. Retinal pigment epithelial cells (RPEs) are believed to play an important role in the pathogenesis of diabetic retinopathy. However, the effect of hyperglycemia on glucose transporters in RPEs and the related signal pathways have not yet been elucidated. Therefore, we examined the effect of high glucose on the glucose transporter 1 in ARPEs and the related signal molecules. In the present study, high glucose decreased 2-deoxyglucose uptake in a time (>2 h) and dose dependent manner. In addition, we found that high glucose downregulated the expression of glucose transporter 1 (GLUT-1). The high glucose-induced downregulation of GLUT-1 was blocked by Wortmanin, LY 294002 (PI-3 kinase inhibitors) and Akt (Akt inhibitor). The high glucose increased stimulation of Akt activation in a time dependent manner. We also investigated the upstream regulator of Akt activation. The high glucose-induced phosphorylation of Akt was blocked by bisindolymaleimide I, H-7, staurosporine (protein kinase C [PKC] inhibitors), vitamin C and catalase (antioxidants). In addition, the high glucose-induced downregulation of GLUT-1 was also blocked by PKC inhibitors and antioxidants. Moreover, high glucose increased lipid peroxide formation, which was prevented by PKC inhibitors. In conclusion, high glucose downregulated GLUT-1 by Akt pathway activation mediated by the PKC-oxidative stress signaling pathway in ARPE cells.  相似文献   

6.
Superoxide production by NADPH oxidase is essential for the bactericidal properties of phagocytes. Phosphorylation of p47(phox), one of the cytosolic components of NADPH oxidase, is a crucial step of the oxidase activation. Some evidences suggest that phosphoinositide 3-kinase (PI3K) is involved in p47(phox) phosphorylation, but it has not been fully understood how PI3K regulates it. The aim of this study was to examine the mechanism underlying the PI3K regulation of p47(phox) phosphorylation. Pharmacological inhibition of PI3K attenuated both fMLP-stimulated p47(phox) phosphorylation and NADPH oxidase activity in HL-60 cells differentiated to a neutrophil-like phenotype. Although fMLP elicited Akt activation in a PI3K-dependent manner, an Akt inhibitor had no effect on the oxidase activity triggered by fMLP. In vitro kinase assay revealed that Akt was unable to catalyze p47(phox) phosphorylation. Interestingly, the activation of cPKC and PKCdelta after fMLP stimulation was dependent on PI3K. Furthermore, PI3K inhibitors reduced the activation of phospholipase Cgamma2 without affecting tyrosine phosphorylation on it. These results suggest that PI3K regulates the phosphorylation of NADPH oxidase component p47(phox) by controlling diacylglycerol-dependent PKCs but not Akt.  相似文献   

7.
Reactive oxygen species (ROS) are important for intracellular signaling mechanisms regulating many cellular processes. Manganese superoxide dismutase (MnSOD) may regulate cell growth by changing the level of intracellular ROS. In our study, we investigated the effect of ROS on 7721 human hepatoma cell proliferation. Treatment with H2O2 (1-10 microM) or transfection with antisense MnSOD cDNA constructs significantly increased the cell proliferation. Recently, the mitogen-activated protein kinases (MAPK) and the protein kinase B (PKB) were proposed to be involved in cell growth. Accordingly, we assessed the ability of ROS to activate MAPK and PKB. PKB and extracellular signal-regulated kinase (ERK) were both rapidly and transiently activated by 10 microM H2O2, but the activities of p38 MAPK and JNK were not changed. ROS-induced PKB activation was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, suggesting that PI3-K is an upstream mediator of PKB activation in 7721 cells. Transfection with sense PKB cDNA promoted c-fos and c-jun expression in 7721 cells, suggesting that ROS may regulate c-fos and c-jun expression via the PKB pathway. Furthermore we found that exogenous H2O2 could stimulate the proliferation of PKB-AS7721 cells transfected with antisense PKB cDNA, which was partly dependent on JNK activation, suggesting that H2O2 stimulated hepatoma cell proliferation via cross-talk between the PI3-K/PKB and the JNK signaling pathways. However, insulin could stimulate 7721 cell proliferation, which is independent of cross-talk between PI3-K/PKB and JNK pathways. In addition, H2O2 did not induce the cross-talk between the PI3-K/PKB and the JNK pathways in normal liver cells. Taken together, we found that ROS regulate hepatoma cell growth via specific signaling pathways (cross-talk between PI3-K/PKB and JNK pathway) which may provide a novel clue to elucidate the mechanism of hepatoma carcinogenesis.  相似文献   

8.
9.
Okochi Y  Kimura KD  Ohta A  Mori I 《The EMBO journal》2005,24(12):2127-2137
Molecular and pharmacological studies in vitro suggest that protein kinase C (PKC) family members play important roles in intracellular signal transduction. Nevertheless, the in vivo roles of PKC are poorly understood. We show here that nPKC-epsilon/eta TTX-4 in the nematode Caenorhabditis elegans is required for the regulation of signal transduction in various sensory neurons for temperature, odor, taste, and high osmolality. Interestingly, the requirement for TTX-4 differs in different sensory neurons. In AFD thermosensory neurons, gain or loss of TTX-4 function inactivates or hyperactivates the neural activity, respectively, suggesting negative regulation of temperature sensation by TTX-4. In contrast, TTX-4 positively regulates the signal sensation of ASH nociceptive neurons. Moreover, in AWA and AWC olfactory neurons, TTX-4 plays a partially redundant role with another nPKC, TPA-1, to regulate olfactory signaling. These results suggest that C. elegans nPKCs regulate different sensory signaling in various sensory neurons. Thus, C. elegans provides an ideal model to reveal genetically novel components of nPKC-mediated molecular pathways in sensory signaling.  相似文献   

10.
11.
12.
Vanadium salts such as vanadyl sulfate (VS), potent inhibitors of protein tyrosine phosphatases, have been shown to mimic, augment, and prolong insulin's action. However, the molecular mechanism of responses to these salts is not clear. In the present studies, we examined if VS-induced effects on insulin action are associated with enhancement or augmentation in the activation state of key components of the insulin signaling pathway. Treatment of insulin receptor-overexpressing cells with insulin or VS resulted in a time-dependent transient increase in phosphorylation and activation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) that peaked at about 5 min, then declined rapidly to about baseline within 30 min. However, when the cells were treated with VS before stimulation with insulin, sustained ERK 1/2 phosphorylation and activation were observed well beyond 60 min. VS treatment also prolonged the insulin-stimulated activation of phosphatidylinositol 3-kinase (PI3-K), which was associated with sustained interaction between insulin receptor substrate-1 (IRS-1) and the p(85 alpha) subunit of phosphatidylinositol 3-kinase (PI3-K) in response to insulin. These data indicate that prolongation of insulin-stimulated ERK 1/2 and PI3-K activation by VS is due to a more stable complex formation of IRS-1 with the p(85 alpha) subunit which may, in turn, be responsible for its ability to enhance and extend the biological effects of insulin.  相似文献   

13.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are major enzymes that function in Phase II detoxification reactions by catalyzing the conjugation of reduced glutathione through cysteine thiol. In this study, we cloned and sequenced four GST genes from the monogonont rotifer Brachionus koreanus. The domain regions of four Bk-GSTs showed a high similarity to those of other species. In addition, to evaluate the potential of GST genes as an early warning signal for oxidative stress, we exposed sublethal concentrations of copper (Cu) to B. koreanus and measured glutathione (GSH) contents and several antioxidant enzymes such as glutathione S-transferase (GST), glutathione peroxidase (GPx; EC 1.11.1.9), and glutathione reductase (GR; EC 1.8.1.7). The reactive oxygen species (ROS) at 12 h and 24 h after copper exposure increased significantly. GSH contents however did not increase significantly and even it decreased at 0.24 mg/L at 12 h. The activities of several antioxidant enzymes, particularly GPx and GR, showed a dramatic increase in 0.24 mg/L of CuCl2. Messenger RNAs of each Bk-GST showed different patterns of modulations according to GST types, and particularly, Bk-GST-omega, Bk-GST-sigma, and Bk-GST zeta genes were highly sensitive to Cu. These results indicate that Bk-GSTs, functioning as one of the enzymatic defense mechanisms particularly in the early stage of oxidative stress response, were induced by Cu exposure. This also suggests that these genes and related enzymes have a potential as biomarkers for a more sensitive initial stress response.  相似文献   

14.
We have previously reported that expression of the constitutively active mutant of Galpha11 or stimulation of m1 muscarinic acetylcholine receptor induced proteolytic activation of Rho-associated kinase (ROCK-I) by caspase and apoptosis in HeLa cells. In this study, we investigate the molecular mechanisms of Galphaq/11-induced apoptosis in m1 muscarinic acetylcholine receptor-expressing HeLa cells. Overexpression of Bcl-2 inhibited carbachol-induced ROCK-I cleavage, indicating a mitochondrial apoptotic pathway. Overexpression of the constitutively active mutant of Akt that delivers an anti-apoptotic survival signal had a similar influence. Insulin, a major survival factor in many cells, strongly increased phosphorylation of Akt, which was completely blocked by carbachol. This latter effect was partially inhibited by treatment with the tyrosine phosphatase inhibitors, orthovanadate and pervanadate. In parallel with these observations, carbachol attenuated insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1, an effect eliminated by orthovanadate. On the other hand, carbachol induced rapid stimulation of endogenous RhoA, and expression of a constitutively active mutant of RhoA increased ROCK-I cleavage. Orthovanadate and the dominant negative mutant of RhoA partially, and their combination completely, inhibited carbachol-induced ROCK-I cleavage and apoptosis. These results demonstrate that Gq/11 signaling induces apoptosis by reducing insulin-stimulated Akt phosphorylation through tyrosine dephosphorylation and activating RhoA in HeLa cells.  相似文献   

15.
16.
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.  相似文献   

17.
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood. Here, we report that mutations that disrupt the VAB-1 Eph receptor tyrosine kinase cause incompletely penetrant defects in axonal targeting and neuronal cell body positioning. The predominant axonal defect in vab-1 mutant animals was an overextension axon phenotype. Interestingly, constitutively active VAB-1 tyrosine kinase signaling caused a lack of axon outgrowth or an early termination phenotype, opposite to the loss-of-function phenotype. The combination of loss-of-function and gain-of-function analyses suggests that the VAB-1 Eph RTK is required for targeting or limiting axons and neuronal cells to specific regions, perhaps by transducing a repellent or stop cue.  相似文献   

18.
The nematode worm Caenorhabditis elegans (C. elegans) is increasingly popular as a model organism for aging studies as well as for testing antioxidants and other compounds for effects on longevity. However, results in the literature are sometimes confusing and contradictory [1], [2], [3] and [4]. This review introduces C. elegans as a model organism, discusses aspects that make it attractive for aging and antioxidant research, and addresses some problems and potential artifacts.  相似文献   

19.
目的:探讨磷脂酰肌醇-3-激酶/蛋白激酶B(PI3K/Akt)信号通路在白藜芦醇抗缺血/再灌注性心律失常中的作用及机制。方法:48只健康雄性SD大鼠,取心电图正常者随机分为4组(n=10):假手术(SC组)组、缺血/再灌注(I/R组)组、白藜芦醇处理(Res处理组)组、PI3K抑制剂LY294002(LY294002组)组。建立大鼠在体心肌缺血/再灌注模型,观察各组心律失常的发生情况及左室血流动力学变化,Western blot法测定心肌组织中蛋白激酶B(Akt)、磷酸化蛋白激酶B(p-Akt)、缝隙连接蛋白43(Cx43)蛋白表达水平,以RT-PCR法从转录水平检测Cx43的表达水平。结果:与I/R组相比,Res处理组心律失常的发生率(心律失常评分)明显降低、左室舒缩功能明显升高,同时心肌Akt、Cx43蛋白表达及Cx43mRNA水平也明显升高;使用PI3K抑制剂LY294002后,心肌Akt、Cx43蛋白表达及Cx43mRNA水平下降的同时心律失常的发生率明显升高、左室舒缩功能明显降低。结论:白藜芦醇的抗再灌注性心律失常作用可能是通过激活PI3K/Akt信号通路,改变Cx43活性及分布实现的。  相似文献   

20.
Here we provide evidence for a C2H2 zinc finger gene family with similarity to Ikaros and hunchback. The founding member of this family is Caenorhabditis elegans ehn-3, which has important and poorly understood functions in somatic gonad development. We examined the expression and function of four additional hunchback/Ikaros-like (HIL) genes in C. elegans reproductive system development. Two genes, ehn-3 and R08E3.4, are expressed in somatic gonadal precursors (SGPs) and have overlapping functions in their development. In ehn-3; R08E3.4 double mutants, we find defects in the generation of distal tip cells, anchor cells, and spermatheca; three of the five tissues derived from the SGPs. We provide in vivo evidence that C. elegans HIL proteins have functionally distinct zinc finger domains, with specificity residing in the N-terminal set of four zinc fingers and a likely protein-protein interaction domain provided by the C-terminal pair of zinc fingers. In addition, we find that a chimeric human Ikaros protein containing the N-terminal zinc fingers of EHN-3 functions in C. elegans. Together, these results lend support to the idea that the C. elegans HIL genes and Ikaros have similar functional domains. We propose that hunchback, Ikaros, and the HIL genes arose from a common ancestor that was present prior to the divergence of protostomes and deuterostomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号