首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several putative schizophrenia susceptibility genes have recently been reported, but it is not clear whether these genes are associated with schizophrenia in general or with specific disease subtypes. In a previous study, we found an association of the neuregulin 1 (NRG1) gene with non-deficit schizophrenia only. We now report an association study of four schizophrenia candidate genes in patients with and without deficit schizophrenia, which is characterized by severe and enduring negative symptoms. Single-nucleotide polymorphisms (SNPs) were genotyped in the DTNBP1 (dysbindin), G72/G30 and RGS4 genes, and the relatively unknown PIP5K2A gene, which is located in a region of linkage with both schizophrenia and bipolar disorder. The sample consisted of 273 Dutch schizophrenia patients, 146 of whom were diagnosed with deficit schizophrenia and 580 controls. The strongest evidence for association was found for the A-allele of SNP rs10828317 in the PIP5K2A gene, which was associated with both clinical subtypes (P = 0.0004 in the entire group; non-deficit P = 0.016, deficit P = 0.002). Interestingly, this SNP leads to a change in protein composition. In RGS4, the G-allele of the previously reported SNP RGS4-1 (single and as part of haplotypes with SNP RGS4-18) was associated with non-deficit schizophrenia (P = 0.03) but not with deficit schizophrenia (P = 0.79). SNPs in the DTNBP1 and G72/G30 genes were not significantly associated in any group. In conclusion, our data provide further evidence that specific genes may be involved in different schizophrenia subtypes and suggest that the PIP5K2A gene deserves further study as a general susceptibility gene for schizophrenia.  相似文献   

2.
Several independent linkage studies have demonstrated that the 1q22 region is likely to harbor candidate schizophrenia susceptibility genes. Recently, some genetic variants within CAPON have been reported as exhibiting significant linkage disequilibrium to schizophrenia in Canadian familial-schizophrenia pedigrees. We examined nine single nucleotide polymorphisms (SNPs), which span an approximately 236-kb region of CAPON, in 664 schizophrenia cases and 941 controls in the Chinese Han population. We detected a significant difference in allele distributions of SNP rs348624 (P = 0.000017). Moreover, the overall frequency of haplotypes constructed from three SNPs including rs348624 showed significant difference between cases and controls (P = 0.000025). Our findings indicate that CAPON gene may be a candidate susceptibility gene for schizophrenia in Chinese Han population, and also provide further support for the potential importance of NMDAR-mediated glutamatergic transmission in the etiology of schizophrenia.  相似文献   

3.
Genetic variants in a gene on 6p22.3, dysbindin, have been shown recently to be associated with schizophrenia (Straub et al. 2002a). There is no doubt that replication in other independent samples would enhance the significance of this finding considerably. Since the gene is located in the center of the linkage peak on chromosome 6p that we reported earlier, we decided to test six of the most positive DNA polymorphisms in a sib-pair sample and in an independently ascertained sample of triads comprising 203 families, including the families for which we detected linkage on chromosome 6p. Evidence for association was observed in the two samples separately as well as in the combined sample (P=.00068 for SNP rs760761). Multilocus haplotype analysis increased the significance further to .00002 for a two-locus haplotype and to .00001 for a three-locus haplotype. Estimation of frequencies for six-locus haplotypes revealed one common haplotype with a frequency of 73.4% in transmitted, and only 57.6% in nontransmitted, parental haplotypes. All other six-locus haplotypes occurring at a frequency of >1% were less often transmitted than nontransmitted. Our results represent a first successful replication of linkage disequilibrium in psychiatric genetics detected in a region with previous evidence of linkage and will encourage the search for causes of schizophrenia by the genetic approach.  相似文献   

4.
Several linkage studies across multiple population groups provide convergent support for a susceptibility locus for schizophrenia--and, more recently, for bipolar disorder--on chromosome 6q13-q26. We genotyped 192 European-ancestry and African American (AA) pedigrees with schizophrenia from samples that previously showed linkage evidence to 6q13-q26, focusing on the MOXD1-STX7-TRARs gene cluster at 6q23.2, which contains a number of prime candidate genes for schizophrenia. Thirty-one screening single-nucleotide polymorphisms (SNPs) were selected, providing a minimum coverage of at least 1 SNP/20 kb. The association observed with rs4305745 (P=.0014) within the TRAR4 (trace amine receptor 4) gene remained significant after correction for multiple testing. Evidence for association was proportionally stronger in the smaller AA sample. We performed database searches and sequenced genomic DNA in a 30-proband subsample to obtain a high-density map of 23 SNPs spanning 21.6 kb of this gene. Single-SNP analyses and also haplotype analyses revealed that rs4305745 and/or two other polymorphisms in perfect linkage disequilibrium (LD) with rs4305745 appear to be the most likely variants underlying the association of the TRAR4 region with schizophrenia. Comparative genomic analyses further revealed that rs4305745 and/or the associated polymorphisms in complete LD with rs4305745 could potentially affect gene expression. Moreover, RT-PCR studies of various human tissues, including brain, confirm that TRAR4 is preferentially expressed in those brain regions that have been implicated in the pathophysiology of schizophrenia. These data provide strong preliminary evidence that TRAR4 is a candidate gene for schizophrenia; replication is currently being attempted in additional clinical samples.  相似文献   

5.
Many reports in different populations have demonstrated linkage of the 10q24–q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24–q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10−6) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10−6) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required.  相似文献   

6.
Previous linkage analyses of families with multiple cases of schizophrenia by us and others have confirmed the involvement of the chromosome 11q22-24 region in the etiology of schizophrenia, with LOD scores of 3.4 and 3.1. We now report fine mapping of a susceptibility gene in the 11q22-24 region, determined on the basis of a University College London (UCL) sample of 496 cases and 488 supernormal controls. Confirmation was then performed by the study of an Aberdeen sample consisting of 858 cases and 591 controls (for a total of 2,433 individuals: 1,354 with schizophrenia and 1,079 controls). Seven microsatellite or single-nucleotide polymorphism (SNP) markers localized within or near the FXYD6 gene showed empirically significant allelic associations with schizophrenia in the UCL sample (for D11S1998, P=.021; for rs3168238, P=.009; for TTTC20.2, P=.048; for rs1815774, P=.049; for rs4938445, P=.010; for rs4938446, P=.025; for rs497768, P=.023). Several haplotypes were also found to be associated with schizophrenia; for example, haplotype Hap-F21 comprising markers rs10790212-rs4938445-rs497768 was found to be associated with schizophrenia, by a global permutation test (P=.002). Positive markers in the UCL sample were then genotyped in the Aberdeen sample. Two of these SNPs were found to be associated with schizophrenia in the Scottish sample (for rs4938445, P=.044; for rs497768, P=.037). The Hap-F21 haplotype also showed significant association with schizophrenia in the Aberdeen sample, with the same alleles being associated (P=.013). The FXYD6 gene encodes a protein called "phosphohippolin" that is highly expressed in regions of the brain thought to be involved in schizophrenia. The protein functions by modulating the kinetic properties of Na,K-ATPase to the specific physiological requirements of the tissue. Etiological base-pair changes in FXYD6 or in associated promoter/control regions are likely to cause abnormal function or expression of phosphohippolin and to increase genetic susceptibility to schizophrenia.  相似文献   

7.
Chromosome 5q33 is a region that has previously shown good evidence of linkage to schizophrenia, with four LOD scores >3.00 in independent linkage studies. We studied 450 unrelated white English, Irish, Welsh, and Scottish research subjects with schizophrenia and 450 ancestrally matched supernormal controls. Four adjacent markers at the 5' end of the Epsin 4 gene showed significant evidence of linkage disequilibrium with schizophrenia. These included two microsatellite markers, D5S1403 (P=.01) and AAAT11 (P=.009), and two single-nucleotide-polymorphism markers within the Epsin 4 gene, rs10046055 (P=.007) and rs254664 (P=.01). A series of different two- and three-marker haplotypes were also significantly associated with schizophrenia, as confirmed with a permutation test (HapA, P=.004; HapB, P=.0005; HapC, P=.007; and HapD, P=.01). The Epsin 4 gene encodes the clathrin-associated protein enthoprotin, which has a role in transport and stability of neurotransmitter vesicles at the synapses and within neurons. A genetically determined abnormality in the structure, function, or expression of enthoprotin is likely to be responsible for genetic susceptibility to a subtype of schizophrenia on chromosome 5q33.3.  相似文献   

8.
The report of a putative schizophrenia susceptibility gene linked to markers in the chromosome 5q11-q13 region and subsequent failures of replication have provoked considerable controversy. We here report six Welsh families multiply affected with schizophrenia in which there is no evidence for linkage between a dominant-like schizophrenia gene and 5q11-q13 markers. It is argued that our new results together with a combined reanalysis of previous studies suggest that a schizophrenia susceptibility gene can be excluded from the 5q11-q13 region. The apparent disparities between published results are most likely to reflect a chance finding in the one positive study and probably should not be interpreted as resulting from true linkage heterogeneity.  相似文献   

9.
Multiple linkage regions have been reported in schizophrenia, and some appear to harbor susceptibility genes that are differentially expressed in postmortem brain tissue derived from unrelated individuals. We combined traditional genome-wide linkage analysis in a multiplex family with lymphocytic genome-wide expression analysis. A genome scan suggested linkage to a chromosome 4q marker (D4S1530, LOD 2.17, θ=0) using a dominant model. Haplotype analysis using flanking microsatellite markers delineated a 14 Mb region that cosegregated with all those affected. Subsequent genome-wide scan with SNP genotypes supported the evidence of linkage to 4q33–35.1 (LOD=2.39) using a dominant model. Genome-wide microarray analysis of five affected and five unaffected family members identified two differentially expressed genes within the haplotype AGA and GALNT7 (aspartylglucosaminidase and UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7) with nominal significance; however, these genes did not remain significant following analysis of covariance. We carried out genome-wide linkage analyses between the quantitative expression phenotype and genetic markers. AGA expression levels showed suggestive linkage to multiple markers in the haplotype (maximum LOD=2.37) but to no other genomic region. GALNT7 expression levels showed linkage to regulatory loci at 4q28.1 (maximum LOD=3.15) and in the haplotype region at 4q33–35.1 (maximum LOD=2.37). ADH1B (alcohol dehydrogenase IB) was linked to loci at 4q21–q23 (maximum LOD=3.08) and haplotype region at 4q33–35.1 (maximum LOD=2.27). Seven differentially expressed genes were validated with RT-PCR. Three genes in the 4q33–35.1 haplotype region were also differentially expressed in schizophrenia in postmortem dorsolateral prefrontal cortex: AGA, HMGB2, and SCRG1. These results indicate that combining differential gene expression with linkage analysis may help in identifying candidate genes and potential regulatory sites. Moreover, they also replicate recent findings of complex trans- and cis- regulation of genes.  相似文献   

10.
Linkage between developmental dyslexia (DD) and chromosome 6p has been replicated in a number of independent samples. Recent attempts to identify the gene responsible for the linkage have produced inconsistent evidence for association of DD with a number of genes in a 575-kb region of chromosome 6p22.2, including VMP, DCDC2, KIAA0319, TTRAP, and THEM2. We aimed to identify the specific gene or genes involved by performing a systematic, high-density (approximately 2-3-kb intervals) linkage disequilibrium screen of these genes in an independent sample, incorporating family-based and case-control designs in which dyslexia was defined as an extreme representation of reading disability. Using DNA pooling, we first observed evidence for association with 17 single-nucleotide polymorphisms (SNPs), 13 of which were located in the KIAA0319 gene (P<.01-.003). After redundant SNPs were excluded, 10 SNPs were individually genotyped in 223 subjects with DD and 273 controls. Those SNPs that were significant at P相似文献   

11.
Liang KY  Chiu YF  Beaty TH 《Human heredity》2001,51(1-2):64-78
Multipoint linkage analysis is a powerful tool to localize susceptibility genes for complex diseases. However, the conventional lod score method relies critically on the correct specification of mode of inheritance for accurate estimation of gene position. On the other hand, allele-sharing methods, as currently practiced, are designed to test the null hypothesis of no linkage rather than estimate the location of the susceptibility gene(s). In this paper, we propose an identity-by-descent (IBD)-based procedure to estimate the location of an unobserved susceptibility gene within a chromosomal region framed by multiple markers. Here we deal with the practical situation where some of the markers might not be fully informative. Rather the IBD statistic at an arbitrary within the region is imputed using the multipoint marker information. The method is robust in that no assumption about the genetic mechanism is required other than that the region contains no more than one susceptibility gene. In particular, this approach builds upon a simple representation for the expected IBD at any arbitrary locus within the region using data from affected sib pairs. With this representation, one can carry out a parametric inference procedure to locate an unobserved susceptibility gene. In addition, here we derive a sample size formula for the number of affected sib pairs needed to detect linkage with multiple markers. Throughout, the proposed method is illustrated through simulated data. We have implemented this method including exploratory and formal model-fitting procedures to locate susceptibility genes, plus sample size and power calculations in a program, GENEFINDER, which will be made available shortly.  相似文献   

12.
13.
Psoriasis is a chronic skin disorder with multifactorial etiology. In a recent study, we reported results of a genome-wide scan on 46 French extended families presenting with plaque psoriasis. In addition to unambiguous linkage to the major susceptibility locus PSORS1 on Chromosome 6p21, we provided evidence for a susceptibility locus on Chromosome 20p13. To follow up this novel psoriasis susceptibility locus we used a family-based association test (FBAT) for an association scan over the 17 Mb candidate region. A total of 85 uncorrelated SNP markers located in 65 genes of the region were initially investigated in the same set of large families used for the genome wide search, which consisted of 295 nuclear families. When positive association was obtained for a SNP, candidate genes nearby were explored more in detail using a denser set of SNPs. Thus, the gene ADAM33 was found to be significantly associated with psoriasis in this family set (The best association was on a 3-SNP haplotype P = 0.00004, based on 1,000,000 permutations). This association was independent of PSORS1. ADAM33 has been previously associated with asthma, which demonstrates that immune system diseases may be controlled by common susceptibility genes with general effects on dermal inflammation and immunity. The identification of ADAM33 as a psoriasis susceptibility gene identified by positional cloning in an outbred population should provide insights into the pathogenesis and natural history of this common disease.  相似文献   

14.
Smoking is a common correlate of schizophrenia, which leads to medical morbidity. Although twin and adoption studies have consistently implicated genes in the etiology of both smoking and schizophrenia, finding genes has been difficult. Several authors have suggested that clinical or neurobiological features associated with schizophrenia, such as smoking, might improve the ability to detect schizophrenia susceptibility genes by identifying genes related to the etiology of that feature. The objective of this study is to assess evidence for linkage of sixteen nicotinic acetylcholine receptor genes and smoking in schizophrenia families, using data from the NIMH Genetics Initiative for schizophrenia. Sixteen nicotinic acetylcholine receptor genes were selected prior to analysis. We used a multipoint sibling pair linkage analysis program, SIBPAL2, with a smoking trait in schizophrenia families. The significance of the group of candidate genes, in addition to each individual candidate gene, was assessed using permutation testing, which adjusted for multiple comparisons. The group of genes showed significant linkage to the smoking trait after adjusting for multiple comparisons through permutation testing (p = 0.039). In addition, two of the individual candidate genes were significant (CHRNA2, p = 0.044) and (CHRNB2, p = 0.015) and two genes were marginally significant (CHRNA7, p = 0.095; CHRNA1, p = 0.076). The significance of the complex hypothesis, involving sixteen genes, implicates the nicotinic system in smoking for schizophrenic families. Individual gene analysis suggests that CHRNA2 and CHRNB2 may play a particular role in this involvement. Such findings help prioritize genes for future case control studies. In addition, we provide a novel permutation method that is useful in future analyses involving a single hypothesis, with multiple candidate genes.  相似文献   

15.
Schizophrenia is one of the most debilitating neuropsychiatric disorders, affecting 0.5-1.0% of the population worldwide. Its pathology, attributed to defects in synaptic transmission, remains elusive. The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes a coiled-coil protein, dysbindin, is a major susceptibility gene for schizophrenia. Our previous results have demonstrated that the sandy (sdy) mouse harbors a spontaneously occurring deletion in the DTNBP1 gene and expresses no dysbindin protein (Li, W., Q. Zhang, N. Oiso, E.K. Novak, R. Gautam, E.P. O'Brien, C.L. Tinsley, D.J. Blake, R.A. Spritz, N.G. Copeland, et al. 2003. Nat. Genet. 35:84-89). Here, using amperometry, whole-cell patch clamping, and electron microscopy techniques, we discovered specific defects in neurosecretion and vesicular morphology in neuroendocrine cells and hippocampal synapses at the single vesicle level in sdy mice. These defects include larger vesicle size, slower quantal vesicle release, lower release probability, and smaller total population of the readily releasable vesicle pool. These findings suggest that dysbindin functions to regulate exocytosis and vesicle biogenesis in endocrine cells and neurons. Our work also suggests a possible mechanism in the pathogenesis of schizophrenia at the synaptic level.  相似文献   

16.
【目的】家蚕Bombyx mori非滞育红卵突变体Re-nd是唯一在非滞育状态下卵色呈现鲜红色的突变品种。本研究通过基因连锁分析和定位克隆的方法确定Re-nd的突变基因所在的染色体及紧密连锁位置,为后续Re-nd的功能研究及应用奠定基础。【方法】以家蚕卵色突变体Re-nd和野生型大造进行杂交,配制基因连锁分析群体材料和定位克隆群体材料;针对家蚕全染色体进行SNP标记开发,利用BC1代群体材料进行基因连锁分析,确定Re-nd的突变基因所在的染色体;针对定位的Re nd的突变基因所在染色体进行SNP标记开发,利用BC1群体材料对Re-nd的突变基因进行定位克隆。【结果】基因连锁分析结果显示Re-nd的突变表型与第6号染色体上的SNP标记完全连锁;初步定位克隆结果显示Re-nd的突变基因位于SNP标记SNP7和SNP17之间,物理距离4.04 Mb;以SNP7和SNP17之间筛选出的6个SNP标记和25个重组个体进行精细定位克隆,结果显示Re-nd的突变基因所在的区域位于SNP10和SNP12两个SNP标记之间的nscaf2853上,物理距离949.3 kb左右。【结论】将Re-nd的突变基因定位于第6号染色体的2个SNP标记SNP10和SNP12之间,物理距离约949.3 kb。本研究为后续Re-nd突变基因的精细定位及功能应用研究奠定了基础。  相似文献   

17.
Linkage evidence suggests that chromosome 13 (13q32-33) contains susceptibility genes for both bipolar disorder and schizophrenia. Recently, genes called "G72" and "G30" were identified, and polymorphisms of these overlapping genes were reported to be associated with schizophrenia. We studied two series of pedigrees with bipolar disorder: the Clinical Neurogenetics (CNG) pedigrees (in which linkage to illness had been previously reported at 13q32-33), with 83 samples from 22 multiplex families, and the National Institute of Mental Health (NIMH) Genetics Initiative pedigrees, with 474 samples from 152 families. Sixteen single-nucleotide polymorphisms (SNPs) were genotyped at and around the G72/G30 locus, which covered a 157-kb region encompassing the entire complementary DNA sequences of G72 and G30. We performed transmission/disequilibrium testing (TDT) and haplotype analysis, since a linkage-disequilibrium block was present at this gene locus. In the CNG and NIMH data sets, the results of global TDT of the entire haplotype set were significant and consistent (P=.0004 and P=.008, respectively). In the CNG series, the associated genotypes divided the families into those with linkage and those without linkage (partitioned by the linkage evidence). Analysis of the decay of haplotype sharing gave a location estimate that included G72/G30 in its 95% confidence interval. Although statistically significant association was not detected for individual SNPs in the NIMH data set, the same haplotype was consistently overtransmitted in both series. These data suggest that a susceptibility variant for bipolar illness exists in the vicinity of the G72/G30 genes. Taken together with the earlier report, this is the first demonstration of a novel gene(s), discovered through a positional approach, independently associated with both bipolar illness and schizophrenia.  相似文献   

18.
Genome scans indicate a linkage of autism to the chromosome 7q21-q36 region. Recent studies suggest that the Reelin gene may be one of the loci contributing to the positive linkage between chromosome 7q and autism. However, these studies were relatively small scale, using a few markers in the gene. We investigated 34 single nucleotide polymorphisms (SNPs) in the Reelin gene with an average spacing between the SNPs of 15 kb for evidence of association with autism. There were significant differences in the transmission of the alleles of exon 22 and intron 59 SNP to autistic subjects. Our findings support a role for the Reelin gene in the susceptibility to autism.  相似文献   

19.
20.
We have investigated the gene for dystrobrevin-binding protein 1 (DTNBP1), or dysbindin, which has been strongly suggested as a positional candidate gene for schizophrenia, in three samples of subjects with schizophrenia and unaffected control subjects of German (418 cases, 285 controls), Polish (294 cases, 113 controls), and Swedish (142 cases, 272 controls) descent. We analyzed five single-nucleotide polymorphisms (P1635, P1325, P1320, P1757, and P1578) and identified significant evidence of association in the Swedish sample but not in those from Germany or Poland. The results in the Swedish sample became even more significant after a separate analysis of those cases with a positive family history of schizophrenia, in whom the five-marker haplotype A-C-A-T-T showed a P value of.00009 (3.1% in controls, 17.8% in cases; OR 6.75; P=.00153 after Bonferroni correction). Our results suggest that genetic variation in the dysbindin gene is particularly involved in the development of schizophrenia in cases with a familial loading of the disease. This would also explain the difficulty of replicating this association in consecutively ascertained case-control samples, which usually comprise only a small proportion of subjects with a family history of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号