首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bet hedging, organisms sacrifice short‐term success to reduce the long‐term variance in success. Delayed germination is the classic example of bet hedging, in which a fraction of seeds remain dormant as a hedge against the risk of complete reproductive failure. Here, we investigate the adaptive nature of delayed germination as a bet hedging strategy using long‐term demographic data on Sonoran Desert winter annual plants. Using stochastic population models, we estimate fitness as a function of delayed germination and identify evolutionarily stable strategies for 12 abundant species in the community. Results indicate that delayed germination meets the criteria as a bet hedging strategy for all species. Density‐dependent models, but not density‐independent ones, predicted optimal germination strategies that correspond remarkably well with observed patterns. By incorporating naturally occurring variation in seed and seedling dynamics, our results present a rigorous test of bet hedging theory within the relevant environmental context.  相似文献   

2.
Seed (egg) banking is a common bet‐hedging strategy maximizing the fitness of organisms facing environmental unpredictability by the delayed emergence of offspring. Yet, this condition often requires fast and drastic stochastic shifts between good and bad years. We hypothesize that the host seed banking strategy can evolve in response to coevolution with parasites because the coevolutionary cycles promote a gradually changing environment over longer times than seed persistence. We study the evolution of host germination fraction as a quantitative trait using both pairwise competition and multiple mutant competition methods, while the germination locus can be genetically linked or unlinked with the host locus under coevolution. In a gene‐for‐gene model of coevolution, hosts evolve a seed bank strategy under unstable coevolutionary cycles promoted by moderate to high costs of resistance or strong disease severity. Moreover, when assuming genetic linkage between coevolving and germination loci, the resistant genotype always evolves seed banking in contrast to susceptible hosts. Under a matching‐allele interaction, both hosts’ genotypes exhibit the same seed banking strategy irrespective of the genetic linkage between loci. We suggest host–parasite coevolution as an additional hypothesis for the evolution of seed banking as a temporal bet‐hedging strategy.  相似文献   

3.
种子萌发对策:理论与实验   总被引:9,自引:2,他引:7  
李良  王刚 《生态学报》2003,23(6):1165-1174
植物种子的萌发/休眠现象有复杂的原因和机制,综述了理论生态学家的研究结果。应用的理论基础是最优化理论和进化稳定对策(Ess)理论。当环境条件随机波动,种群受非密度依赖因素调节时,采用最优化理论的两头下注对策预测休眠一定会得到进化且萌发率与环境条件直接相关。环境条件稳定时采用进化稳定对策理论可得到在亲属竞争,种子扩散,基因冲突等等因素影响下的进化稳定休眠/萌发率,预测了休眠/萌发与它们之间的相互关系。以上各种环境条件影响种子萌发行为的方式可以表述为若种子立即萌发会遭遇到不良环境使适合度下降,那么就会推迟萌发,出现休眠,形成土壤种子库。萌发率应使种群适合度最优或具有进化稳定性。一些实验也部分验证了理论预测。  相似文献   

4.
Bet‐hedging theory makes the counter‐intuitive prediction that, if juvenile survival is low and unpredictable, organisms should consistently reduce short‐term reproductive output to minimize the risk of reproductive failure in the long‐term. We investigated the long‐term reproductive output of an Agassiz's desert tortoise (Gopherus agassizii) population and conformance to a bet‐hedging strategy of reproduction in an unpredictable but comparatively productive environment. Most females reproduced every year, even during periods of low precipitation and poor germination of food plants, and the mean percentage of reproducing females did not differ significantly on an annual basis. Although mean annual egg production (clutch size × clutch frequency) differed significantly among years, mean clutch size and mean clutch frequency remained relatively constant. During an El Niño year, mean annual egg production and mean annual clutch frequency were the highest ever reported for this species. Annual egg production was positively influenced by maternal body size but clutch size and clutch frequency were not. Our long‐term results confirm earlier conclusions based on short‐term research that desert tortoises have a bet‐hedging strategy of producing small clutches almost every year. The risk of long‐term reproductive failure is minimized in unpredictable environments, both through time by annually producing multiple small clutches over a long reproductive lifespan, even in years of low resource availability, and through space by depositing multiple annual clutches in different locations. The extraordinary annual reproductive output of this population appears to be the result of a typically high but unpredictable biomass of annual food plants at the site relative to tortoise habitat in dryer regions. Under the comparatively productive but unpredictable conditions, tortoises conform to predictions of a bet‐hedging strategy of reproduction with relatively small but consistent clutch sizes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA, Biological Journal of the Linnean Society, 2015, 115 , 399–410.  相似文献   

5.
Within‐generation bet hedging: a seductive explanation?   总被引:4,自引:0,他引:4  
Bet hedging occurs when a single genotype shows a variety of phenotypes in the same environment, and each phenotype is successful only when the particular circumstances to which it is adapted occur. The time scale of between-generation bet hedging ensures that all individuals with a given phenotype suffer the same fate – circumstances such as drought exert homogenous pressure on all members of a population. Under within-generation bet hedging, however, individuals with the same phenotype are subject to heterogeneous selection pressure – predation, for example, will affect some individuals but not others. An important consequence of this difference is that conditions favoring the evolution of within-generation bet hedging are very restricted. While a single lineage may realize increased fitness via within-generation bet hedging, this fitness advantage varies inversely with population size and becomes vanishingly small at even modest population sizes. Although several reviews and analyses have highlighted the differences between these two types of bet hedging, confusion persists regarding their respective definitions and evolutionary justification. Bet hedging is a seductive explanation because most students of evolution are trained to focus on costs and benefits at the individual level, and tend to seek adaptive explanations for individual traits. Although this focus is often successful, it leads us astray in the case of within-generation bet hedging. Only by assessing the fitness effects of a trait in the context of whole populations can one accurately identify traits that can and cannot be favored by within-generation bet hedging.  相似文献   

6.
Seed dormancy is thought to be a key mechanism allowing annual plants to spread extinction risk in unpredictably varying environments. Theory predicts increasing germination fractions with increasing probability of reproductive success but solid empirical evidence is scarce and often confounded with environmental factors. Here we provide an empirical test of bet‐hedging via delayed germination for three annual plant species along a ‘predictability gradient’ in Israel. We excluded confounding environmental and maternal effects by raising inbred seed families and germinating them under controlled conditions. Additionally, we germinated field‐collected seeds in three consecutive seasons to compare their germination with inbred families where maternal effects were removed. Risk of reproductive failure was quantified using demographic data from the field and from second‐generation inbred lines raised in a rainfall gradient in the greenhouse. Our findings were consistent with bet‐hedging theory in that germination fraction was negatively related to species‐ and site‐specific risk of reproductive failure. Both field and hand‐raised seeds of one species exhibited higher dormancy with increasing risk of reproductive failure across sites, and hand‐raised seeds of another species showed the same pattern. The third species exhibited a rather random pattern of germination between years and sites, corresponding to the lack of site‐specific risk of reproductive failure. Species‐specific patterns of dormancy and risk could be related to alternative risk‐spreading strategies such as high adult survival, but were also affected by phylogeny. We provide strong empirical evidence for seed dormancy being a mechanism to reduce the risk of reproductive failure in highly variable environments, but a larger number of rigorous experimental tests of bet hedging germination are needed. Specifically, the genetic basis of bet‐hedging must be shown in species with different life histories, for demonstrating that dormancy is adaptive and how it is modified by other risk‐spreading traits.  相似文献   

7.
Temporal variability in survivorship and reproduction is predicted to affect the evolution of life-history characters. Desert annual plants experience temporal variation in reproductive success that is largely caused by precipitation variability. We studied several populations of the desert annual Plantago insularis along a precipitation gradient. Whereas models of bet hedging in unpredictable environments generally predict one optimal germination fraction for a population, empirical studies have shown that environmental conditions during germination can cause a range of germination fractions to be expressed. In a 4-yr field study, we found that populations in historically more xeric environments had lower mean germination fractions, as is predicted by bet-hedging models. However, populations exhibited significant variation in germination among years. Two experimental studies measuring germination under several environment conditions were conducted to elucidate the source of this in situ variation. Germination fractions exhibited phenotypic plasticity in response to water availability and date within the season. Populations differed in their norms of reaction such that seeds from more xeric populations germinated under less restrictive conditions. A pattern of delayed germination consistent with among-year bet-hedging predictions arose in the field through the interaction of seed germinability and the distribution of environmental conditions during germination.  相似文献   

8.
Offspring polymorphism is a reproductive strategy where individual organisms simultaneously produce offspring that differ in morphology and ecology. It occurs across the Tree of Life but is particularly common among plants, where it is termed seed (diaspore) heteromorphism. The prevalence of this strategy in unpredictably varying environments has resulted in the assumption that it serves as a bet‐hedging mechanism. We found 101 examples of this strategy in southwestern North America. We provide phylogenetically informed evidence for the hypothesis that the occurrence of seed heteromorphism increases with increasing environmental variability, though this pattern was only significant for aridity, one of our two rainfall variability metrics. We provide a strong test of bet hedging for a large, taxonomically diverse set of seed heteromorphic species, lending support to the hypothesis that bet hedging is an important mechanistic driver for the evolution of seed heteromorphism.  相似文献   

9.
In variable environments, organisms must have strategies to ensure fitness as conditions change. For plants, germination can time emergence with favourable conditions for later growth and reproduction (predictive germination), spread the risk of unfavourable conditions (bet hedging) or both (integrated strategies). Here we explored the adaptive value of within‐ and among‐year germination timing for 12 species of Sonoran Desert winter annual plants. We parameterised models with long‐term demographic data to predict optimal germination fractions and compared them to observed germination. At both temporal scales we found that bet hedging is beneficial and that predicted optimal strategies corresponded well with observed germination. We also found substantial fitness benefits to varying germination timing, suggesting some degree of predictive germination in nature. However, predictive germination was imperfect, calling for some degree of bet hedging. Together, our results suggest that desert winter annuals have integrated strategies combining both predictive plasticity and bet hedging.  相似文献   

10.
During the growing season, some individuals in perennial plant populations may remain alive belowground while others emerge. This phenomenon, known as prolonged dormancy, seems maladaptive, because prolonged dormancy delays growth and reproduction. However, prolonged dormancy may offer the benefit of safety while belowground, leading to the hypothesis that prolonged dormancy is a bet-hedging strategy. We evaluated this hypothesis using a 25-year demographic study of Astragalus scaphoides, an iteroparous perennial plant. First, we determined the relationship between prolonged dormancy and fitness using data from individuals in our population. This analysis showed that prolonged dormancy decreased arithmetic mean fitness and reduced variance in fitness. Geometric mean fitness was maximized at intermediate levels of prolonged dormancy. Empirical patterns of lifetime reproductive success confirm this relationship. We also compared fitness of plants in our population to hypothetical plants without prolonged dormancy, which generally revealed benefits of prolonged dormancy, even if plants could forgo prolonged dormancy without costs to other vital rates. Therefore, prolonged dormancy may indeed function as a bet-hedging strategy, but the benefits of remaining belowground outweigh the costs only for a subset of individuals. Bet hedging has been demonstrated in plants with simple life histories, such as annuals and monocarpic perennials; we present evidence that bet hedging may be important for plants with more complex life histories.  相似文献   

11.
Females that mate with multiple males (polyandry) may reduce the risk that their eggs are fertilized by a single unsuitable male. About 25 years ago it was hypothesized that bet‐hedging could function as a mechanism favoring the evolution of polyandry, but this idea is controversial because theory indicates that bet‐hedging via polyandry can compensate the costs of mating only in small populations. Nevertheless, populations are often spatially structured, and even in the absence of spatial structure, mate‐choice opportunity can be limited to a few potential partners. We examined the effectiveness of bet‐hedging in such situations with simulations carried out under two scenarios: (1) intrinsic male quality, with offspring survival determined by male phenotype (male's ability to generate viable offspring), and (2) genetic incompatibility (offspring fitness determined nonadditively by parental genotypes). We find higher fixation probabilities for a polyandrous strategy compared to a monandrous strategy if complete reproductive failure due to male effects or parental incompatibility is pervasive in the population. Our results also indicate that bet‐hedging polyandry can delay the extinction of small demes. Our results underscore the potential for bet‐hedging to provide benefits to polyandrous females and have valuable implications for conservation biology.  相似文献   

12.
Polyandry has been hypothesized to allow females to “bet hedge” against mating only with unsuitable mates, reducing variance in offspring fitness between members of a polyandrous lineage relative to a single‐mating one. Theoretically, this reduction in fitness variance could select for polyandrous genotypes even when polyandry carries a direct cost, especially in small populations. However, this hypothesis is controversial and difficult to test empirically. Here, I apply a novel simulation model to 49 published empirical datasets, and quantify the potential selective advantage of multiple mating via reduced offspring fitness variance. For a wide range of assumptions, including those that most favor the evolution of bet hedging, I show that any fitness gains are meager. The variance in offspring quality caused by mate identity does not appear to be high enough for bet hedging to drive the evolution of polyandry.  相似文献   

13.
Understanding how organisms adapt to environmental variation is a key challenge of biology. Central to this are bet‐hedging strategies that maximize geometric mean fitness across generations, either by being conservative or diversifying phenotypes. Theoretical models have identified environmental variation across generations with multiplicative fitness effects as driving the evolution of bet‐hedging. However, behavioral ecology has revealed adaptive responses to additive fitness effects of environmental variation within lifetimes, either through insurance or risk‐sensitive strategies. Here, we explore whether the effects of adaptive insurance interact with the evolution of bet‐hedging by varying the position and skew of both arithmetic and geometric mean fitness functions. We find that insurance causes the optimal phenotype to shift from the peak to down the less steeply decreasing side of the fitness function, and that conservative bet‐hedging produces an additional shift on top of this, which decreases as adaptive phenotypic variation from diversifying bet‐hedging increases. When diversifying bet‐hedging is not an option, environmental canalization to reduce phenotypic variation is almost always favored, except where the tails of the fitness function are steeply convex and produce a novel risk‐sensitive increase in phenotypic variance akin to diversifying bet‐hedging. Importantly, using skewed fitness functions, we provide the first model that explicitly addresses how conservative and diversifying bet‐hedging strategies might coexist.  相似文献   

14.
Lehmann L  Balloux F 《Genetics》2007,176(1):361-377
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.  相似文献   

15.
Wright's adaptive topography describes gene frequency evolution as a maximization of mean fitness in a constant environment. I extended this to a fluctuating environment by unifying theories of stochastic demography and fluctuating selection, assuming small or moderate fluctuations in demographic rates with a stationary distribution, and weak selection among the types. The demography of a large population, composed of haploid genotypes at a single locus or normally distributed phenotypes, can then be approximated as a diffusion process and transformed to produce the dynamics of population size, N, and gene frequency, p, or mean phenotype, . The expected evolution of p or is a product of genetic variability and the gradient of the long-run growth rate of the population, , with respect to p or . This shows that the expected evolution maximizes , the mean Malthusian fitness in the average environment minus half the environmental variance in population growth rate. Thus, as a function of p or represents an adaptive topography that, despite environmental fluctuations, does not change with time. The haploid model is dominated by environmental stochasticity, so the expected maximization is not realized. Different constraints on quantitative genetic variability, and stabilizing selection in the average environment, allow evolution of the mean phenotype to undergo a stochastic maximization of . Although the expected evolution maximizes the long-run growth rate of the population, for a genotype or phenotype the long-run growth rate is not a valid measure of fitness in a fluctuating environment. The haploid and quantitative character models both reveal that the expected relative fitness of a type is its Malthusian fitness in the average environment minus the environmental covariance between its growth rate and that of the population.  相似文献   

16.
The rare rainforest tree species, Syzygium paniculatum, is the only known Australian species of the genus to produce seeds that regularly have multiple embryos. Evidence from other species suggests that this is a case of adventitious polyembryony, with the embryos arising from maternal nucellar tissue. In the present study we use microsatellite data to determine whether sexual reproduction does occur and, if it does, to investigate the relative fitness of asexual versus sexual seedlings. Genotyping suggested that the species is a polyploid and our results found very little genetic diversity within and among populations (with a total of nine genotypic combinations across the entire species). The only significant variation was between the three northernmost populations and the other eight populations sampled. Analysis of individual embryos showed that sexually derived embryos did occur in some seeds but that these were not necessarily the fittest. In general, the seedling from the largest embryo is the first to emerge and maintains a competitive advantage over the other seedlings from the same seed. We discuss the ramifications of the low levels of genetic diversity and consider whether there is a direct relationship between polyembryony and the inferred polyploidy of the species. We consider the possible advantages of reproductive bet‐hedging but also highlight the susceptibility of a species with low genetic diversity to extreme stochastic events. Syzygium paniculatum occurs in areas heavily impacted by human activity and these findings should contribute to improved management of this threatened species.  相似文献   

17.
Adaptive phenotypic plasticity evolves when cues reliably predict fitness consequences of life‐history decisions, whereas bet hedging evolves when environments are unpredictable. These modes of response should be jointly expressed, because environmental variance is composed of both predictable and unpredictable components. However, little attention has been paid to the joint expression of plasticity and bet hedging. Here, I examine the simultaneous expression of plasticity in germination rate and two potential bet‐hedging traits – germination fraction and within‐season diversification in timing of germination – in seeds from multiple seed families of five geographically distant populations of Lobelia inflata (L.) subjected to a thermal gradient. Populations differ in germination plasticity to temperature, in total germination fraction and in the expression of potential diversification in the timing of germination. The observation of a negative partial correlation between the expression of plasticity and germination variance (potential diversification), and a positive correlation between plasticity and germination fraction is suggestive of a trade‐off between modes of response to environmental variance. If the observed correlations are indicative of those between adaptive plasticity and bet hedging, we expect an optimal balance to exist and differ among populations. I discuss the challenges involved in testing whether the balance between plasticity and bet hedging depends on the relative predictability of environmental variance.  相似文献   

18.
Delayed seed germination is considered to be a bet-hedging strategy, but experimental evidence of its adaptive role as an inherited trait is still lacking. In each of two co-occuring annual grass species, populations of Mediterranean and desert origin were studied during three consecutive years for population demography and seed germination in the reciprocally introduced experimental soil seed banks. The two environments strikingly differed in productivity (annual rainfall) and predictability (variation in amount and timing of annual rainfall). The two species exhibited highly similar pattern of seed size and dormancy across the two environments. In both species, a higher proportion of dormant seeds was observed at the desert location and for the seeds of desert origin, consistent with bet-hedging buffering against unpredictability of rainfall and high probability of drought in this environment. In addition, in both species seed mass was significantly less in plants of desert origin than in plants of Mediterranean origin. The two environments differed in demographic consequences of temporal variation in precipitation. In the Mediterranean population, even in the year of least precipitation, adults grew to maturity and seeds were produced. These seeds served to maintain population size. In contrast, in the desert population, in the year of least rainfall no seedlings survived to maturity and the soil seed bank was the only source of population persistence. Altogether, the results concur with predicted by adaptive bet hedging importance of delayed germination under marginal precipitation.  相似文献   

19.
Deterministic seasonality can explain the evolution of alternative life history phenotypes (i.e., life history polyphenism) expressed in different generations emerging within the same year. However, the influence of stochastic variation on the expression of such life history polyphenisms in seasonal environments is insufficiently understood. Here, we use insects as a model and explore (1) the effects of stochastic variation in seasonality and (2) the life cycle on the degree of life history differentiation among the alternative developmental pathways of direct development and diapause (overwintering), and (3) the evolution of phenology. With numerical simulation, we determine the values of development (growth) time, growth rate, body size, reproductive effort, adult life span, and fecundity in both the overwintering and directly developing generations that maximize geometric mean fitness. The results suggest that natural selection favors the expression of alternative life histories in the alternative developmental pathways even when there is stochastic variation in seasonality, but that trait differentiation is affected by the developmental stage that overwinters. Increasing environmental unpredictability induced a switch to a bet‐hedging type of life history strategy, which is consistent with general life history theory. Bet‐hedging appeared in our study system as reduced expression of the direct development phenotype, with associated changes in life history phenotypes, because the fitness value of direct development is highly variable in uncertain environments. Our main result is that seasonality itself is a key factor promoting the evolution of seasonally polyphenic life histories but that environmental stochasticity may modulate the expression of life history phenotypes.  相似文献   

20.
Environmental stochasticity is known to play an important role in life-history evolution, but most general theory assumes a constant environment. In this paper, we examine life-history evolution in a variable environment, by decomposing average individual fitness (measured by the long-run stochastic growth rate) into contributions from average vital rates and their temporal variation. We examine how generation time, demographic dispersion (measured by the dispersion of reproductive events across the lifespan), demographic resilience (measured by damping time), within-year variances in vital rates, within-year correlations between vital rates and between-year correlations in vital rates combine to determine average individual fitness of stylized life histories. In a fluctuating environment, we show that there is often a range of cohort generation times at which the fitness is at a maximum. Thus, we expect ‘optimal’ phenotypes in fluctuating environments to differ from optimal phenotypes in constant environments. We show that stochastic growth rates are strongly affected by demographic dispersion, even when deterministic growth rates are not, and that demographic dispersion also determines the response of life-history-specific average fitness to within- and between-year correlations. Serial correlations can have a strong effect on fitness, and, depending on the structure of the life history, may act to increase or decrease fitness. The approach we outline takes a useful first step in developing general life-history theory for non-constant environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号