首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of dopamine on crustacean hyperglycemic hormone (CHH) release and hemolymph glucose levels in the crayfish Procambarus clarkii were investigated. A quantitative sandwich enzyme-linked immunosorbent assay (ELISA) using antibodies specific for Prc CHH was developed and characterized. The sensitivity of the ELISA was about 1 fmol/well. Specific measurement of CHH in hemolymph samples by the ELISA was demonstrated by the parallelism between CHH standard curve and sample (hemolymph) titration curve. Moreover, thermally stressed P. clarkii exhibited a characteristic change of hemolymph CHH levels as revealed by the ELISA. CHH and glucose levels increased significantly within 30 min of dopamine injection, peaked at 1 h, and returned to the basal levels at 4 h. Dose-dependent effects of dopamine on CHH and glucose levels were observed between 10(-8) to 10(-6) mol/animal. Dopamine-induced increases in CHH and glucose levels were absent in eyestalk-ablated animals. Finally, dopamine significantly stimulated the release of CHH from in vitro incubated eyestalk ganglia. These results suggest that dopamine enhances release of CHH into hemolymph that in turn evokes hyperglycemic responses and that the predominant site of dopamine-induced CHH release is the X-organ-sinus gland complex located within the eyestalk.  相似文献   

2.
3.
1. Administration of biogenic amines into intact Carcinus maenas induces dose- and timedependent elevation of hemolymph glucose level.2. Removal of the neurosecretory centre containing the crustacean hyperglycemic hormone (CHH) by ablation of the eyestalks did not induce hypoglycemia.3. Injection of dopamine (DA) into eyestalkless crabs showed no hyperglycemic effect, while serotonin (5-HT), epinephrine (E), norepinephrine (NE), and octopamine (OA) elevated glucose levels.4. The dopaminergic effect was significantly reduced by administration of trifluoperazine (TFP).5. 5-HT and OA were found to be strong elevators of glucose levels, while the other biogenic amines had moderate effects only.6. The results indicate, that DA exerts its hyperglycemic effect by stimulating the release of CHH from the eyestalk neurosecretory centre. Elevation of hemolymph glucose level by 5-HT, OA, E, and NE, occurs independently of CHH.  相似文献   

4.
Crustacean hyperglycemic hormone (CHH) is released from the X-organ/sinus gland complex located in the eyestalks, and regulates glucose levels in the hemolymph. In the giant freshwater prawn (Macrobrachium rosenbergii), two cDNAs encoding different CHH molecules were previously cloned by other workers. One of these (Mar-CHH-2) was expressed only in the eyestalks, whereas the other (Mar-CHH-L) was expressed in the heart, gills, antennal gland, and thoracic ganglion, but not in the eyestalks. However, their biological activities had not yet been characterized. Therefore, in this study, recombinant Mar-CHH-2 (rMar-CHH-2) and Mar-CHH-L (rMar-CHH-L) were produced using an E. coli expression system, by expression in bacterial cells and recovery in the insoluble fraction. Thereafter, rMar-CHH-2 and rMar-CHH-L were subjected to refolding and were subsequently purified by reversed-phase HPLC. The rMar-CHH-2 and rMar-CHH-L thus obtained exhibited the same disulfide bond arrangements as those of other CHHs reported previously, indicative of natural conformation. In in vivo bioassay, rMar-CHH-2 showed significant hyperglycemic activity, whereas rMar-CHH-L had no effect. These results indicate that Mar-CHH-L does not function as a CHH, but may have some other, unknown function.  相似文献   

5.
Crustacean hyperglycemic hormone (CHH) is a pleiotropic neuropeptide that regulates carbohydrate and lipid metabolism, molting, reproduction, and osmoregulation in decapod crustaceans. CHH elevates glucose levels in the hemolymph by stimulating glycogenolysis in target tissues. It also inhibits ecdysteroidogenesis in the molting gland, or Y-organ (YO), possibly as a response to environmental stress. CHH acts via binding to a membrane receptor guanylyl cyclase, which is expressed in most tissues, including the YO. Large amounts of biologically active neuropeptide are required to investigate the mechanism of CHH signaling in the YO. Consequently, the eyestalk ganglia CHH (EG-CHH) isoform was cloned into a yeast (Pichia pastoris) expression vector to express recombinant mature peptide (rEG-CHH) with or without a C-terminal c-Myc/polyhistidine tag. Yeast cultures with untagged or tagged rEG-CHH inhibited ecdysteroidogenesis in YOs from European green crab (Carcinus maenas) 36% (P < 0.002) and 51% (P < 0.006), respectively. Purified tagged EG-CHH inhibited YO ecdysteroidogenesis 32% (P < 0.002), but lacked hyperglycemic activity in vivo. This is the first report of recombinant EG-CHH inhibiting YO ecdysteroidogenesis. The data suggest that the tagged recombinant peptide can be used to elucidate the CHH signaling pathway in the crustacean molting gland.  相似文献   

6.
Previous studies suggested the retina could be a putative locus of daily crustacean hyperglycemic hormone (CHH) secretion, as it possesses its own metabolic machinery and is independent of the well-known CHH eyestalk locus responsible for the circadian secretion of this peptide. However, it has been proposed that hemolymph glucose and lactate concentrations play a dual role in the regulation of CHH in crayfish. To elucidate the temporal relationship between these two different CHH production loci and to examine their relationship with glucose regulation, we investigated the expression of CHH daily and circadian rhythms in the eyestalk and retina of crayfish using biochemical methods and time series analysis. We wanted to determine whether (1) putative retina and eyestalk CHH rhythmic expressions are correlated and if the oscillations of the two metabolic products of lactate and glucose in the blood due to CHH action on the target tissue correlate, and (2) retina CHH (RCHH) and the possible retinal substrate glycogen and its product glucose are temporally correlated. We found a negative correlation between daily and circadian changes of relative CHH abundance in the retina and eyestalk. This correlation and the cross-correlation values found between eyestalk CHH and hemolymph and glucose confirm that CHH produced by the X-organ sinus gland complex is under the previously proposed dual feedback control system over the 24?h time period. However, the presence of both glycogen and glucose in the retina, the cross-correlation values found between these parameters and hemolymph lactate and glucose, as well as RCHH and hemolymph and retina metabolic markers suggest RCHH is not under the same temporal metabolic control as eyestalk CHH. Nonetheless, their expression may be linked to common rhythms-generating processes. (Author correspondence: ; )  相似文献   

7.
Melatonin was injected into intact and eyestalk-ablated fiddler crabs (Uca pugilator), and its effects on hemolymph glucose and lactate levels were studied. In intact crabs, glucose and lactate levels cycled simultaneously, with peaks occurring during early and late photophase. Melatonin caused a shift in the glucose and lactate cycles, with only one peak occurring closer to mid-photophase. In eyestalk-ablated animals, the glucose rhythmicity was lost; lactate cycled, but levels were significantly lower than in intact animals. Melatonin caused a delayed hyperglycemia in eyestalk-ablated animals, with concurrent but much lower increases in lactate. Overall, melatonin demonstrated delayed hyperglycemic effects that do not appear to be mediated solely via eyestalk factors such as crustacean hyperglycemic hormone (CHH), though involvement of the eyestalks cannot be ruled out. An influence on extra-eyestalk CHH secretion is a potential mechanism of melatonin activity.  相似文献   

8.
Crustacean hyperglycemic hormone (CHH), a neurohormone synthesized and released from the x-organ sinus gland complex, is primarily involved in carbohydrate metabolism; biogenic amines and peptidergic neuroregulators are known to modulate the release of CHH. Marked elevations of hemolymph glucose titers, which peaked within 2 h, were observed in both intact and bilaterally eyestalk-ablated prawns, Macrobrachium rosenbergii, when they were transferred directly from their optimal temperature of 28 °C to lower temperatures close to their lethal limit. Hyperglycemia can therefore be considered a characteristic response in this species under cold shock. Involvement of biogenic amines in the hyperglycemic response was also demonstrated. Hyperglycemic effects of epinephrine, dopamine and serotonin were mediated through CHH at the eyestalk level, but the response under cold shock was not exclusively mediated through CHH. It is suggested that factor(s) other than CHH are involved in the hyperglycemic response, possibly norepinephrine or/and octopamine. Accepted: 24 October 1998  相似文献   

9.
10.
11.
The present study was designed to understand how carbohydrate (CBH) and protein metabolism are related in the penaeid shrimp Litopenaeus vannamei. With this information, we obtained a comprehensive schedule of the protein-carbohydrate metabolism including enzymatic, energetic, and functional aspects. We used salinity to determine its role as a modulator of the protein-carbohydrate metabolism in shrimp. Two experiments were designed. The first experiment evaluated the effect of CBH-salinity combinations in growth and survival, and hemolymph glucose, protein, and ammonia levels, digestive gland glycogen, osmotic pressure, and glutamate dehydrogenase (GDH) of L. vannamei juveniles acclimated during 18 days at a salinity of 15 per thousand and 40 per thousand. The second experiment was done to evaluate the effect of dietary CBH level on pre- and postprandial oxygen consumption, ammonia excretion, and the oxygen-nitrogen ratio (O/N) of juvenile L. vannamei in shrimps acclimated at 40 per thousand salinity. We also evaluated the ability of shrimp to carbohydrate adaptation. We made phosphoenolpyruvate carboxykinase (PECPK) and hexokinase activity measurements after a change in dietary carbohydrate levels at different times during 10 days. The growth rate depended on the combination salinity-dietary CBH-protein level. The maximum growth rate was obtained in shrimps maintained at 15 per thousand salinity and with a diet containing low CBH and high protein. The protein in hemolymph is related to the dietary protein levels; high dietary protein levels produced a high protein concentration in hemolymph. This suggests hemolymph is able to store proteins after a salinity acclimation. Depending on the salinity, the hemolymph proteins could be used as a source of osmotic effectors or as metabolic energy. The O/N values obtained show that shrimp used proteins as a source of energy, mainly when shrimps were fed with low CBH. The role played by postprandial nitrogen excretion (PPNE) in apparent heat increase (AHI) (PPNE/AHI ratio) is lower in shrimps fed diets containing high CBH in comparison with shrimps fed diets containing low CBH levels. These results confirm that the metabolism of L. vannamei juveniles is controlled by dietary protein levels, affecting the processes involved in the mechanical and biochemical transformations of ingested food. A growth depression effect was observed in shrimps fed with low-CBH protein diets and maintained in 40 per thousand salinity. In these shrimps, the hemolymph ammonia concentration (HAC) was significantly higher than that observed in shrimps fed with low CBH and maintained in 15 per thousand salinity. That high HAC level coincided with lower growth rate, which suggests that this level might be toxic for juveniles of L. vannamei. Results obtained for GDH activity showed this enzyme regulated both HAC and hemolymph protein levels, with high values in shrimps fed with low CBH levels and maintained in 40 per thousand salinity, and lower in shrimps fed with high CBH and maintained in 15 per thousand salinity. These differences mean that shrimp with a high-gill GDH activity might waste more energy in oxidation of the excess proteins and amino acids, reducing the energy for growth. It was evident that L. vannamei can convert protein to glycogen by a gluconeogenic pathway, which permitted shrimp to maintain a minimum circulating glucose of 0.34 mg/ml in hemolymph. A high PECPK activity was observed in shrimps fed a diet containing low CBH level indicating that the gluconeogenic pathway is activated, as in vertebrates by low dietary CBH levels. After a change in diet, we observed a change in PEPCK; however, it was lower and seems to depend on the way of adaptation, because it occurred after 6 days when adapting to a high-CBH diet and with little change for the low-CBH diet.  相似文献   

12.
Double-stranded RNA (dsRNA) gene interference is an efficient method to silence gene expression in a sequence specific manner. Here we show, that dsRNA targeting the allatostatin (AS)-A type (FGL/I/V-amide) gene of Gryllus bimaculatus (Ensifera, Gryllidae) and Spodoptera frugiperda (Lepidoptera, Noctuidae) injected into freshly moulted larvae or adult crickets and moths produced a rapid and long-lasting reduction in the mRNA levels in various tissues. The effect lasted up to 7 days. Following dsRNA injection, the juvenile hormone (JH) titers in the hemolymph were clearly raised in both species. AS-dsRNA injection induced a reduced body weight in larval and adult crickets and the imaginal moult was incomplete. Silencing allatostatin type-A expression also reduced the egg and testes development in crickets, and the oviposition rate was drastically diminished in both species.  相似文献   

13.
The profiles of circulating ecdysteroids during the three molt cycles prior to adulthood were monitored from the juvenile blue crab, Callinectes sapidus. Ecdysteroid patterns are remarkably similar in terms of peak concentrations ranging between 210–330 ng/ml hemolymph. Analysis of hemolymph at late premolt stage revealed six different types of ecdysteroids with ponasterone A (PoA) and 20‐OH ecdysone (20‐OH E) as the major forms. This ecdysteroid profile was consistent in all three molt cycles. Bilateral eyestalk ablation (EA) is a procedure that removes inhibitory neurohormones including crustacean hyperglycemic hormone (CHH) and molt‐inhibiting hormone (MIH) and often results in precocious molting in crustaceans. However, the inhibitory roles of these neuropeptides in vivo have not yet been tested in C. sapidus. We determined the regulatory roles of CHH and MIH in the circulating ecdysteroid from ablated animals through daily injection. A daily administration of purified native CHH and MIH at physiological concentration maintained intermolt levels of ecdysteroids in the EA animals. This suggests that Y organs (YO) require a brief exposure to CHH and MIH in order to maintain the low level of ecdysteroids. Compared to intact animals, the EA crabs did not exhibit the level of peak ecdysteroids, and the major ecdysteroid turned out to be 20‐OH E, not PoA. These results further underscore the important actions of MIH and CHH in ecdysteroidogenesis, as they not only inhibit, but also control the composition of output of the YO activity. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
Crustins are antimicrobial peptides initially identified in the hemocytes of the crab Carcinus maenas (11.5-kDa peptide or carcinin) and recently also recognized in penaeid shrimps and other crustacean species. The aim of this study was to identify sequences encoding for crustins from the hemocytes of four Brazilian penaeid species: Farfantepenaeus paulensis, Farfantepenaeus subtilis, Farfantepenaeus brasiliensis and Litopenaeus schmitti. Using primers based on consensus nucleotide alignment of crustins from different crustaceans, cDNA sequences coding for crustins in all indigenous penaeid species were amplified. The obtained four crustin sequences encoded for peptides containing a hydrophobic N-terminal region rich in glycine repeats and a C-terminal part with 12 cysteine residues and a conserved whey acidic protein domain. All obtained crustin sequences showed high amino acidic similarity among each other and with crustins from litopenaeid shrimps (76-98%). This is the first report of crustins in native Brazilian penaeid shrimps.  相似文献   

15.
Summary The secretory dynamics of the Crustacean Hyperglycemic Hormone (CHH)-producing cells in the eyestalk of the crayfish Astacus leptodactylus were studied during the daily cycle (12 h light/12 h dark). The different secretory stages of individual cells were determined by means of immunocytochemistry combined with morphometric analysis at the light-microscopic level. The data obtained were correlated with the 24-h rhythmicity of blood glucose concentration. The results suggest the following hypothesis. The synthetic activity of the CHH cells receives a stimulus 2 h before the beginning of the dark period, resulting in a pronounced transfer of CHH granules into the axons. These CHH granules reach the axon terminals after the onset of the dark period. At that time a burst of exocytotic activity occurs, causing a strong release of CHH into the hemolymph. Four hours later this CHH release results in hyperglycemia. The same process, though with less intensity, is repeated and causes a second smaller glucose peak at the beginning of the light period.  相似文献   

16.
The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the levels of serotonin and CHH on thermal stress in the blue swimmer crab, P. pelagicus.  相似文献   

17.
Crustacean hyperglycemic hormone (CHH) peptide family members play critical roles in growth and reproduction in decapods. Three cDNAs encoding CHH family members (Pj-CHH1ES, Pj-CHH1PO, and Pj-CHH2) were isolated by a combination of bioinformatic analysis and conventional cloning strategies. Pj-CHH1ES and Pj-CHH1PO were products of the same gene that were generated by alternative mRNA splicing, whereas Pj-CHH2 was the product of a second gene. The Pj-CHH1 and Pj-CHH2 genes had four exons and three introns, suggesting the two genes arose from gene duplication. The three cDNAs were classified in the type I CHH subfamily, as the deduced amino acid sequences had a CHH precursor-related peptide sequence positioned between the N-terminal signal sequence and C-terminal mature peptide sequence. The Pj-CHH1ES isoform was expressed at a higher level in the eyestalk X-organ/sinus gland (XO/SG) complex and at a lower level in the gill. The Pj-CHH1PO isoform was expressed at higher levels in the XO/SG complex, brain, abdominal ganglion, and thoracic ganglion and at a lower level in the epidermis. Pj-CHH2 was expressed at a higher level in the thoracic ganglion and at a lower level in the gill. Real-time polymerase chain reaction was used to quantify the effects of eyestalk ablation on the mRNA levels of the three Pj-CHHs in the brain, thoracic ganglion, and gill. Eyestalk ablation reduced expression of Pj-CHH1ES in the brain and Pj-CHH1PO and Pj-CHH2 in the thoracic ganglion. Sequence alignment of the Pj-CHHs with CHHs from other species indicated that Pj-CHH2 had an additional alanine at position #9 of the mature peptide. Molecular modeling showed that the Pj-CHH2 mature peptide had a short alpha helix (α1) in the N-terminal region, which is characteristic of type II CHHs. This suggests that Pj-CHH2 differs in function from other type I CHHs.  相似文献   

18.
19.
According to the "glucose toxicity" hypothesis, hyperglycemia contributes to defective beta-cell function in type 2, non-insulin-dependent diabetes mellitus. This concept is supported by substantial data in rodent models of diabetes. However, the ability of glucose to stimulate the accumulation of insulin mRNA, a critical feature of normal beta-cell physiology, has not been investigated in in vivo models with chronic hyperglycemia. The aim of this study was to determine whether glucose-induced insulin mRNA accumulation is impaired in the neonatal streptozotocin-treated rat (n0-STZ rat), a model of non-obese, non-insulin-dependent diabetes mellitus. Islets of Langerhans isolated from n0-STZ and control rats were cultured for 24 h in the presence of 2.8 or 16.7 mmol/l glucose, and insulin mRNA levels were measured by Northern analysis. Insulin mRNA levels were increased more than twofold by glucose in control islets. In contrast, no significant effect of glucose was found on insulin mRNA levels in n0-STZ islets. We conclude that insulin gene regulation by glucose is impaired in n0-STZ rat islets.  相似文献   

20.
The identification, purification and characterization of a new postlarval specific hemolymph protein from Manduca sexta is described. Incorporation of [35S]methionine into Manduca sexta hemolymph proteins in vivo was investigated as a function of development. A major protein band of Mr ≈ 50,000 was highly labeled during the prepupal and adult stage but not in feeding larvae. This postlarval protein (PLP) was isolated from adult male hemolymph and its chemical and immunological properties determined. PLP is a basic protein (pI ~8.6). Electrophoresis under denaturing conditions reveals a subunit Mr ≈ 50,000 while the native protein has an apparent Mr ~ 85,000 by gel permeation chromatography. Anti-PLP serum recognized PLP but not other hemolymph proteins on immunoblots. In vitro translation of fat body mRNA followed by immunoprecipitation revealed that fat body is the site of PLP synthesis. Quantitation of PLP levels in hemolymph throughout development was performed and suggests PLP may play a role in adult development of M. sexta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号