首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a novel mutation in the coding region of theSRY gene in a 46, XY female with Swyer syndrome. Analysis ofSRY was carried out by direct sequencing of a 780-bp PCR product that included theSRY open reading frame (ORF). This revealed the presence of a point mutation, ins 108A, in the coding region 5’ to the HMG box which results in a frame shift and premature termination of the encoded protein. No other mutation was found in theSRY ORF. We infer that sex reversal in this individual is a result of this insertion. In none of the 13 other 46, XY females that were studied was a mutation detected inSRY, confirming earlier findings that most cases of XY femaleness are due to causes other than mutation inSRY. These observations and those of others are discussed in relation to the aetiology of XY sex reversal.  相似文献   

2.
3.
Studies on the phylogenetic conservation of the SRY gene   总被引:10,自引:2,他引:8  
Summary A probe from a conserved motif of the SRY gene (sex-determining region Y), a prime candidate for the human testis-determinant, was hybridized to DNA from 23 species representing 5 vertebrate classes. Hybridization occurred in species with male or female heterogamety, in species with and without sex chromosomes and in those with temperature sex determination. Sex-specific signals were observed only in mammals. Conservation of sequences homologous with SRY through 400 million years of vertebrate evolution would indicate persistence of function. However, if SRY is the primary sex determinant in mammals, it is not clear that it has a similar function, or even one that is sex-related, in nonmammals.  相似文献   

4.
SRY (sex-determining region Y) is widely conserved in eutherian mammals as a sex-determining gene located on the Y chromosome. SRY proteins bind to the testis-specific enhancer of SOX9 (TES) with SF1 to upregulate SOX9 expression in undifferentiated gonads of XY embryos of humans and mice. The core region within TES, named TESCO, is an important enhancer for mammalian sex determination. We show that TESCO of the genus Tokudaia lost enhancer activity caused by mutations in its SRY and SF1 binding sites. Two species of Tokudaia do not have the Y chromosome or SRY, and one species has multiple SRYs located on the neo-Y chromosome consisting of the Y fused with an autosome. The sequence of Tokudaia TESCO exhibited more than 83% identity with mouse TESCO, however, nucleotide substitution(s) were found in two out of three SRY binding sites and in five out of six SF1 binding sites. TESCO of all species showed low enhancer activity in cells co-transfected with SRY and SF1, and SOX9 and SF1 in reporter gene assays. Mutated TESCO, in which nucleotide substitutions found in SRY and SF1 binding sites were replaced with mouse sequence, recovered the activity. Furthermore, SRYs of the SRY-positive species could not activate the mutated TESCO or mouse TESCO, suggesting that SRYs lost function as a sex-determining gene any more. Our results indicate that the SRY dependent sex-determining mechanism was lost in a common ancestor of the genus Tokudaia caused by nucleotide substitutions in SRY and SF1 binding sites after emergence of a new sex-determining gene. We present the first evidence for an intermediate stage of the switchover from SRY to a new sex-determining gene in the evolution of mammalian sex-determining mechanism.  相似文献   

5.
TheSRY gene (sex-determining region on the Y chromosome; MIM *480000) is responsible for initiating male gonadal development. However, only 15–20% of the cases of XY gonadal dysgenesis are due to mutations in its sequence. Recently, heterozygous mutations in theNR5A1 gene (nuclear receptor subfamily 5, group A, member 1; MIM +184757) have been described in association with ovarian failure and disorders of testis development with or without adrenal failure. Here we describe a case of XY complete gonadal dysgenesis due to a p.D293N homozygous mutation in theNR5A1 gene, with normalSRY and no adrenal failure.  相似文献   

6.
Sex determination in the early developmental stages of dioecious crops is economically-beneficial. During this study, a human homology of SRY gene was successfully identified in dioecious crops. SRY gene sequences of date palm and jojoba were submitted to GenBank under the accession numbers KC577225 and MK991776, respectively. This is the first report regarding the novel sex-determination methodology of four dioecious plants (jojoba, date palm, papaya, and pistachios). SRY sex gene was found in all the tested dioecious plant and human samples. This novel approach is simple and of significant importance for breeders. It facilitates the unambiguous selection of jojoba and date palm female plants at an early age and reduces the plantation cost of cultivating non-productive male plants. This is a rapid sex-determination technique for dioecious plants and mammals at an early stage. This technique specifically targets the SRY sequence that has been comprehensively investigated in humans. The kit development for the SRY-based sex determination of various crops is in progress.  相似文献   

7.
SRY (sex-determining region Y) gene, MIM 480000, NM_005634) is crucial for sex differentiation which encodes the protein responsible for initiating testis differentiation. SRY mutations are associated with the presence of XY gonadal dysgenesis symptoms.  相似文献   

8.
The rodent Ellobius lutescens is an exceptional mammal which determines male sex constitutively without the SRY gene and, therefore, may serve as an animal model for human 46,XX female-to-male sex reversal. It was suggested that other factors of the network of sex-determining genes determine maleness in these animals. However, some sex-determining genes like SOX9 and SF1 have already been excluded by segregation analysis as primary sex-determining factors in E. lutescens. In this work, we have cloned and characterized two genes of the PIS (polled intersex syndrome) gene interval, which were reported as candidates in female-to-male sex reversal in hornless goats recently. The genes Foxl2 and Pisrt1 from that interval were identified in E. lutescens DNA and mapped to Chromosome 8. We have excluded linkage of Foxl2 and Pisrt1 loci with the sex of the animals. Hence, the involvement of this gene region in sex determination may be specific for goats and is not a general mechanism of XX sex reversal or XX male sex determination.The nucleotide sequence data reported in this article have been submitted to GenBank and have been assigned the accession number AY623815.  相似文献   

9.
10.

Background

Analysis of cell free fetal (cff) DNA in maternal plasma is used routinely for non invasive prenatal diagnosis (NIPD) of fetal sex determination, fetal rhesus D status and some single gene disorders. True positive results rely on detection of the fetal target being analysed. No amplification of the target may be interpreted either as a true negative result or a false negative result due to the absence or very low levels of cffDNA. The hypermethylated RASSF1A promoter has been reported as a universal fetal marker to confirm the presence of cffDNA. Using methylation-sensitive restriction enzymes hypomethylated maternal sequences are digested leaving hypermethylated fetal sequences detectable. Complete digestion of maternal sequences is required to eliminate false positive results.

Methods

cfDNA was extracted from maternal plasma (n = 90) and digested with methylation-sensitive and insensitive restriction enzymes. Analysis of RASSF1A, SRY and DYS14 was performed by real-time PCR.

Results

Hypermethylated RASSF1A was amplified for 79 samples (88%) indicating the presence of cffDNA. SRY real time PCR results and fetal sex at delivery were 100% accurate. Eleven samples (12%) had no detectable hypermethylated RASSF1A and 10 of these (91%) had gestational ages less than 7 weeks 2 days. Six of these samples were male at delivery, five had inconclusive results for SRY analysis and one sample had no amplifiable SRY.

Conclusion

Use of this assay for the detection of hypermethylated RASSF1A as a universal fetal marker has the potential to improve the diagnostic reliability of NIPD for fetal sex determination and single gene disorders.  相似文献   

11.
The testis-determining gene SRY (sex determining region, Y) is located on the short arm of the Y chromosome and consists of a single exon, the central third of which is predicted to encode a conserved motif with DNA binding/bending properties. We describe the screening of 26 patients who presented with 46,XY partial or complete gonadal dysgenesis for mutations in both the SRY open reading frame (ORF) and in 3.8 kb of Y-specific flanking sequences. DNA samples were screened by using the fluorescence-assisted mismatch analysis (FAMA) method. In two patients, de novo mutations causing complete gonadal dysgenesis were detected in the SRY ORF. One was a nonsense mutation 5′ to the HMG box, whereas the other was a missense substitution located at the C terminus of the conserved motif and identical to one previously detected in an unrelated patient. In addition, two Y-specific polymorphisms were found 5′ to the SRY gene, and a sequence variant was identified 3′ to the SRY polyadenylation site. No duplications of the DSS region in 20 of these patients were detected. Received: 18 November 1996 / Revised: 13 December 1996  相似文献   

12.
The applicability of real-time PCR amplification of the chromosome Y marker DYS14 for sex determination was studied. With this aim, real-time PCR of DYS14 (located within the TSPY1-encoding gene) was performed in plasma DNA specimens obtained from 30 men and 30 women. The PCR results showed that 30 specimens were of male and the other 30 were of female origin. All the results were confirmed by the tests for the SRY marker conventionally used in forensic examination. The detection limit for the DYS14-containing DNA region was established in dilution experiments and was equal to 6.7 pg of DNA (two copies of the genome), which corresponds to 6.7 ng of DNA (2000 copies of the genome) in 1 ml of blood. This level of sensitivity allows sex determination in specimens with small amounts of genetic material. The method can be used for noninvasive prenatal diagnostics of sex-linked congenital diseases and in forensic medical examination.  相似文献   

13.
14.
The development of captive breeding programs for the crested gibbons (Hylobates [Nomascus]) of Indochina is hindered by the difficulty of sorting individuals into their correct species and subspecies groups. We describe taxon-specific DNA sequence variation in a 252-base pair region of the mitochondrial cytochrome b gene, which can be used to identify individuals of the three taxa of crested gibbon commonly found in Western zoos. These molecular genetic markers can be amplified from plucked hair and will permit the identification of morphologically similar females and crested gibbons of either sex of unknown origin. Noninvasive genotyping of captive animals will facilitate the genetic management of these critically endangered primates. © 1994 Wiley-Liss, Inc.  相似文献   

15.
A 9-month-old Yorkshire terrier was admitted to the clinic because of abnormal sexual behaviour and clitoral hypertrophy. External examination confirmed standard development of caudal genital organs: vagina, vulva and cervix uteri. Serum profile of gonadotropin hormones 17 β-estradiol (<10.0 pg.ml?1) and testosterone (9.1 ng.ml?1) revealed the presence of testicular tissue. A midline laparotomy was performed to detect the cranial parts of the genital system. Gonads resembling testicles, structures indicating epididymis and rudimentary deferent ducts were resected, along with adherent part of the uterus. Cytogenetic analysis showed a male chromosomal complement 78, XY in all metaphases of the studied Yorkshire terrier dog. The chromosomal constitution was confirmed by fluorescence in situ hybridisation (FISH) with whole-chromosome painting probes specific for chromosomes X and Y, as well as by polymerase chain reaction (PCR) amplification of the 271-bp Y-linked fragment of SRY (the sex-determining region on the Y chromosome) gene. Sequencing of the dog’s SRY gene coding region did not reveal any mutation. To search for potential mutation in the SOX9 gene (Sry-box containing gene 9), which is considered to be one of the key genes involved in the sex determination process, the PCR fragments of exons 1, 2 and 3 originating from the canine patient were sequenced in order to compare with both male and female healthy control dogs. In the analysed regions of the SOX9 gene, no mutation was found.  相似文献   

16.
Accurate and rapid sex determination of preimplantation embryos has great potential both in animal breeding and in human pathology. In the past, sex determination has been accomplished by cytogenetic or immunologic means and by polymerase chain reaction amplification of Y-chromosome-specific repetitive sequences. More recently, amplification of the Y-specific single-copy ZFY gene has been used in humans for sex determination of preimplantation embryos. The experiments reported here indicate that another Y-chromosome-specific single-copy gene, the sex-determining region gene (sry) can be successfully amplified from single mouse blastomeres. Blastocysts positive for sry amplification were reimplanted to foster mothers, and six of six newborns were male. We conclude that sry gene amplification can represent a good marker for embryo sex determination.  相似文献   

17.
18.

Background

Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5’-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations.

Results

A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds.

Conclusions

Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds.  相似文献   

19.
In mammals, testis determination is under the control of the sex-determining gene SRY. This Y-linked gene encodes a protein with a DNA binding domain similar to those found in high-mobility-group proteins. Here we report the cloning and sequences of the SRY genes of yak and Chinese native cattle. Our data show that SRY genes in Bovidae are less divergent, especially in the coding and 3'' regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号