首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
A lacZ transgene, expressed by the myogenin promoter, was introduced into the mouse hypoxanthine phosphoribosyltransferase (Hprt) locus by gene targeting in embryonic stem cells. Embryos between E10.5-E18.5 days were analyzed for expression of the transgene after staining for beta-galactosidase activity. Transgene expression was restricted to the skeletal muscle lineages reflecting a similar temporal and spatial pattern previously demonstrated for the endogenous myogenin gene. Additionally, a second transgene, MC1tk, showed expression in 87% of the clones when targeted to Hprt. This strategy, called targeted transgenesis, provides control for analyzing promoter sequences and for comparing various transgenes expressed by the same promoter.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Cytomegalovirus (CMV) immediate early promoter is a powerful promoter frequently used for driving the expression of transgenes in mammalian cells. However, this promoter gradually becomes silenced in stably transfected cells. We employed Chinese Hamster Ovary (CHO) and human pancreatic cancer (Panc 1) cells stably tansfected with three glycogenes driven by a CMV promoter to study the activation of silenced glycogenes. We found that butyrate, tricostatin A (TSA), and 5-aza-2-deoxycytidine (5-Aza-dC) can activate these CMV-driven glycogenes. The increase in mRNA and protein of a glycogene occurred 8–10 h after butyrate treatment, suggesting an indirect effect of butyrate in the activation of the transgene. The enhanced expression of the trangenes by butyrate and TSA, known inhibitors of histone deacetylase, was independent of the transgene or cell type. However, the transgene can be activated by these two agents in only a fraction of the cells derived from a single clone, suggesting that inactivation of histone deacetylase can only partially explain silencing of the transgenes. Combination treatment of one or both agents with 5-Aza-dC, a known inhibitor of DNA methylase, resulted in a synergistic activation of the transgene, suggesting a cross-talk between histone acetylation and DNA demethylation. Understanding the mechanisms of the inactivation and reactivation of CMV promoter-controlled transgenes should help develop an effective strategy to fully activate the CMV promoter-controlled therapeutic genes silenced by the host cells. Published in 2005.  相似文献   

14.
15.
16.
17.
18.
19.
Mouse telokin and SM22 promoters have previously been shown to direct smooth muscle cell-specific expression of transgenes in vivo in adult mice. However, the activity of these promoters is highly dependent on the integration site of the transgene. In the current study, we found that the ectopic expression of telokin promoter transgenes could be abolished by flanking the transgene with insulator elements from the H19 gene. However, the insulator elements did not increase the proportion of mouse lines that exhibited consistent, detectable levels of transgene expression. In contrast, when transgenes were targeted to the hprt locus, both telokin and SM22 promoters resulted in reproducible patterns and levels of transgene expression in all lines of mice examined. Telokin promoter transgene expression was restricted to smooth muscle tissues in adult and embryonic mice. As reported previously, SM22 transgenes were expressed at high levels specifically in arterial smooth muscle cells; however, in contrast to randomly integrated transgenes, the hprt-targeted SM22 transgenes were also expressed at high levels in smooth muscle cells in veins, bladder, and gallbladder. Using hprt-targeted transgenes, we further analyzed elements within the telokin promoter required for tissue specific activity in vivo. Analysis of these transgenes revealed that the CArG element in the telokin promoter is required for promoter activity in all tissues and that the CArG element and adjacent AT-rich region are sufficient to drive transgene expression in bladder but not intestinal smooth muscle cells. visceral smooth muscle; development; myosin light chain kinase; embryos; CArG element  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号