首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genes expressed differentially in the salivary glands of unfed and fed male ticks, Amblyomma americanum (L.), were identified, cloned and sequenced, and some were compared with those expressed in the salivary glands of Dermacentor andersoni. Total protein and RNA increased sixfold in the salivary glands of fed male A. americanum, while in fed male D. andersoni salivary glands, RNA increased approximately 3.5 times. Feeding D. andersoni in the presence of females increased total RNA by 25% over those fed in the absence of females. Complementary DNAs were synthesized from RNA obtained from unfed and fed ticks and amplified using RNA arbitrarily primed polymerase chain reaction (RAP-PCR) with three different primers in separate reactions. Differential display showed clear banding differences between the fed and the unfed ticks in A. americanum and D. andersoni. Sixty-one cDNA fragments that appeared to be from differentially expressed genes in A. americanum were isolated, cloned and sequenced. Hybridization reactions with labeled cDNA probes confirmed the differential expression of many of the genes in unfed and fed ticks' salivary glands; however, many of the bands contained more than one fragment and some of the fragments isolated from apparently differential bands were not specific. Sequences for 28 of the cDNA fragments (150-600 nucleotides in length) demonstrated similarity to genes in the databases, but nine of these were similar to sequences of unknown function. Some of the gene fragments identified may be important to tick feeding or tick salivary gland physiology, including a histamine-binding protein, an organic ion transporter, an apoptosis inhibitor, a cathepsin-B-like cysteine protease, proteins involved in gene regulation and several proteins involved in protein synthesis. Cross-hybridization of identified cDNAs from A. americanum with cDNA probes synthesized from D. andersoni total RNA did not show significant similarity between the two species.  相似文献   

3.
MicroRNAs (miRNAs) as small non-coding RNAs play important roles in many biological processes such as development, cell signaling and immune response. Small RNA deep sequencing technology provided an opportunity for a thorough survey of miRNAs in a global key pest Plutella xylostella as well as comparative analysis of miRNA expression profile of the insect in association with parasitization by Diadegma semiclausum. Combining the deep sequencing data and bioinformatics, 235 miRNAs were identified from P. xylostella. Differential expression of host cellular miRNAs in response to parasitism was examined by making small RNA libraries from parasitized and naive second instar larvae of P. xylostella. Bantam, miR-276*, miR-10, miR-31 and miR-184 were detected as five most abundant miRNAs in both libraries and 96 miRNAs were identified that were differentially expressed after parasitization. Bantam*, miR-184 and miR-281* were significantly down-regulated and two miRNAs miR-279b and miR-2944b* were highly induced in parasitized larvae. Interestingly, high copy numbers and differential expression of several miRNA passenger strands (miRNA*) suggest their potential roles in host-parasitoid interaction. In conclusion, expression profiling of miRNAs provided insights into their possible involvement in insect immune response to parasitism and offer an important resource for further studies.  相似文献   

4.
The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response.  相似文献   

5.
Emerging evidence indicates that microRNAs (miRNAs), a class of small non-coding regulatory RNAs, have important roles in multiple biological processes. To determine the potential contribution of miRNAs to coal workers’ pneumoconiosis (CWP), we comprehensively surveyed and identified differentially expressed miRNA profiles in patients with CWP by small RNA sequencing and analysis. Mixed serum samples from the different stages of CWP and the control samples were subjected to deep sequencing by applying next-generation sequencing technology. Samples at different disease stages exhibited inconsistent miRNA expression profiles and differentially expressed miRNA profiles. Generally, these miRNAs were dynamically expressed across the different disease stages and showed various relative expression levels. Some miRNAs (such as miR-18a*, 149, 222 and 671-3p) were consistently up-regulated or down-regulated in the different stages of CWP samples. Most of the aberrantly expressed miRNAs showed a down-regulation trend. Differentially expressed miRNAs were also subjected to pairwise comparison between the different stages. Some miRNAs showed significant inconsistent expression trends across the three stages, although they were not significantly dysregulated based on the control sample. Furthermore, a series of special miRNAs organized into miRNA gene clusters and gene families were also surveyed for aberrant expression (such as mir-200 gene family and mir-222 gene cluster). According to experimentally validated target mRNAs of the aberrantly and abundantly expressed miRNAs, functional enrichment analysis suggests that these miRNAs play important roles in various biological processes, including lung tumorigenesis. In summary, we demonstrated that aberrantly expressed circulating miRNAs showed dynamic expression patterns across diseased samples, which suggests that these miRNAs may have critical roles in the occurrence and development of CWP. In addition, some significantly dysregulated miRNAs may be potential non-invasive diagnosis biomarkers based on further study.  相似文献   

6.
7.
Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis.  相似文献   

8.
9.
The placenta is the principal regulator of the in utero environment, and disruptions to this environment can result in adverse offspring health outcomes. To better characterize the impact of in utero perturbations, we assessed the influence of known environmental pollutants on the expression of microRNA (miRNA) in placental samples collected from the National Children''s Study (NCS) Vanguard birth cohort. This study analyzed the expression of 654 miRNAs in 110 term placentas. Environmental pollutants measured in these placentas included dichlorodiphenyldichloroethylene (DDE), bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd). A moderated t-test was used to identify a panel of differentially expressed miRNAs, which were further analyzed using generalized linear models. We observed 112 miRNAs consistently expressed in >70% of the samples. Consistent with the literature, miRNAs located within the imprinted placenta-specific C19MC cluster, specifically mir-517a, mir-517c, mir-522, and mir-23a, are among the top expressed miRNA in our study. We observed a positive association between PBDE 209 and miR-188–5p and an inverse association between PBDE 99 and let-7c. Both PCBs and Cd were positively associated with miR-1537 expression level. In addition, multiple let-7 family members were downregulated with increasing levels of Hg and Pb. We did not observe DDE or BPA levels to be associated with placental miRNA expression. This is the first birth cohort study linking environmental pollutants and placental expression of miRNAs. Our results suggest that placental miRNA profiles may signal in utero exposures to environmental chemicals.  相似文献   

10.
《Genomics》2021,113(3):1514-1521
To explore the role of plasma miRNAs in exosomes in early postmenopausal women. Small RNA sequencing was implemented to clarify the expression of miRNA in plasma exosomes obtained from 15 postmenopausal women, divided into groups of osteoporosis, osteopenia, and normal bone mass based on bone mineral density. Differentially expressed miRNAs (DEMs) were identified by comparing miRNA expression profiles. Five putative miRNAs, miR-224-3p, miR-25-5p, miR-302a-3p, miR-642a-3p, and miR-766-5p were confirmed by real-time PCR; miRNA target genes were obtained from 4 databases: miRWalk, miRDB, RNA22, and TargetScan. The miRNA-mRNA- Kyoto Encyclopedia of Genes and Genomes (KEGG) networks were analyzed, and the DEMs' potential role was investigated by gene ontology terms and KEGG pathway annotation. The results suggest that characterizing plasma exosomal miRNA profiles of early postmenopausal women by small RNA sequencing could identify novel exo-miRNAs involved in bone remodeling, and miR-642a-3p maybe contribute to the prediction and diagnosis of early postmenopausal osteoporosis.  相似文献   

11.
Secreted microRNAs (miRNAs) enclosed within extracellular vesicles (EVs) play a pivotal role in intercellular communication by regulating recipient cell gene expression and affecting target cell function. Here, we report the isolation of three distinct EV subtypes from the human colon carcinoma cell line LIM1863 – shed microvesicles (sMVs) and two exosome populations (immunoaffinity isolated A33-exosomes and EpCAM-exosomes). Deep sequencing of miRNA libraries prepared from parental LIM1863 cells/derived EV subtype RNA yielded 254 miRNA identifications, of which 63 are selectively enriched in the EVs - miR-19a/b-3p, miR-378a/c/d, and miR-577 and members of the let-7 and miR-8 families being the most prominent. Let-7a-3p*, let-7f-1-3p*, miR-451a, miR-574-5p*, miR-4454 and miR-7641 are common to all EV subtypes, and 6 miRNAs (miR-320a/b/c/d, miR-221-3p, and miR-200c-3p) discern LIM1863 exosomes from sMVs; miR-98-5p was selectively represented only in sMVs. Notably, A33-Exos contained the largest number (32) of exclusively-enriched miRNAs; 14 of these miRNAs have not been reported in the context of CRC tissue/biofluid analyses and warrant further examination as potential diagnostic markers of CRC. Surprisingly, miRNA passenger strands (star miRNAs) for miR-3613-3p*, -362-3p*, -625-3p*, -6842-3p* were the dominant strand in A33-Exos, the converse to that observed in parental cells. This finding suggests miRNA biogenesis may be interlinked with endosomal/exosomal processing.  相似文献   

12.
While most miRNA knockouts exhibit only subtle defects, a handful of miRNAs are profoundly required for development or physiology. A particularly compelling locus is Drosophila mir-279, which was reported as essential to restrict the emergence of CO2-sensing neurons, to maintain circadian rhythm, and to regulate ovarian border cells. The mir-996 locus is located near mir-279 and bears a similar seed, but they otherwise have distinct, conserved, non-seed sequences, suggesting their evolutionary maintenance for separate functions. We generated single and double deletion mutants of the mir-279 and mir-996 hairpins, and cursory analysis suggested that miR-996 was dispensable. However, discrepancies in the strength of individual mir-279 deletion alleles led us to uncover that all extant mir-279 mutants are deficient for mature miR-996, even though they retain its genomic locus. We therefore engineered a panel of genomic rescue transgenes into the double deletion background, allowing a pure assessment of miR-279 and miR-996 requirements. Surprisingly, detailed analyses of viability, olfactory neuron specification, and circadian rhythm indicate that miR-279 is completely dispensable. Instead, an endogenous supply of either mir-279 or mir-996 suffices for normal development and behavior. Sensor tests of nine key miR-279/996 targets showed their similar regulatory capacities, although transgenic gain-of-function experiments indicate partially distinct activities of these miRNAs that may underlie that co-maintenance in genomes. Altogether, we elucidate the unexpected genetics of this critical miRNA operon, and provide a foundation for their further study. More importantly, these studies demonstrate that multiple, vital, loss-of-function phenotypes can be rescued by endogenous expression of divergent seed family members, highlighting the importance of this miRNA region for in vivo function.  相似文献   

13.
14.
15.

Background

Progress in generating comprehensive EST libraries and genome sequencing is setting the stage for reverse genetic approaches to gene function studies in the blacklegged tick (Ixodes scapularis). However, proving that RNAi can work in nervous tissue has been problematic. Developing an ability to manipulate gene expression in the tick synganglia likely would accelerate understanding of tick neurobiology. Here, we assess gene silencing by RNA interference in the adult female black-legged tick synganglia.

Results

Tick β-Actin and Na+-K+-ATPase were chosen as targets because both genes express in all tick tissues including synganglia. This allowed us to deliver dsRNA in the unfed adult female ticks and follow a) uptake of dsRNA and b) gene disruption in synganglia. In vitro assays demonstrated total disruption of both tick β-Actin and Na+-K+-ATPase in the synganglia, salivary glands and midguts. When dsRNA was microinjected in unfed adult female ticks, nearly all exhibited target gene disruption in the synganglia once ticks were partially blood fed.

Conclusion

Abdominal injection of dsRNA into unfed adult female ticks appears to silence target gene expression even in the tick synganglia. The ability of dsRNA to cross the blood-brain barrier in ticks suggests that RNAi should prove to be a useful method for dissecting function of synganglia genes expressing specific neuropeptides in order to better assess their role in tick biology.  相似文献   

16.

Background and Purpose

Tissue microRNAs (miRNAs) can detect cancers and predict prognosis. Several recent studies reported that tissue, plasma, and saliva miRNAs share similar expression profiles. In this study, we investigated the discriminatory power of salivary miRNAs (including whole saliva and saliva supernatant) for detection of esophageal cancer.

Materials and Methods

By Agilent microarray, six deregulated miRNAs from whole saliva samples from seven patients with esophageal cancer and three healthy controls were selected. The six selected miRNAs were subjected to validation of their expression levels by RT-qPCR using both whole saliva and saliva supernatant samples from an independent set of 39 patients with esophageal cancer and 19 healthy controls.

Results

Six miRNAs (miR-10b*, miR-144, miR-21, miR-451, miR-486-5p, and miR-634) were identified as targets by Agilent microarray. After validation by RT-qPCR, miR-10b*, miR-144, and miR-451 in whole saliva and miR-10b*, miR-144, miR-21, and miR-451 in saliva supernatant were significantly upregulated in patients, with sensitivities of 89.7, 92.3, 84.6, 79.5, 43.6, 89.7, and 51.3% and specificities of 57.9, 47.4, 57.9%, 57.9, 89.5, 47.4, and 84.2%, respectively.

Conclusions

We found distinctive miRNAs for esophageal cancer in both whole saliva and saliva supernatant. These miRNAs possess discriminatory power for detection of esophageal cancer. Because saliva collection is noninvasive and convenient, salivary miRNAs show great promise as biomarkers for detection of esophageal cancer in areas at high risk.  相似文献   

17.
18.
19.
20.
Skotomorphogenic development is the process by which seedlings adapt to a stressful dark environment. Such metabolic responses to abiotic stresses in plants are known to be regulated in part by microRNAs (miRNAs); however, little is known about the involvement of miRNAs in the regulation of skotomorphogenesis. To identify miRNAs at the genome-wide level in skotomorphogenic seedlings of turnip (Brassica rapa subsp. rapa), an important worldwide root vegetable, we used Solexa sequencing to sequence a small RNA library from seedlings grown in the dark for 4 days. Deep sequencing showed that the small RNAs (sRNAs) were predominantly 21 to 24 nucleotides long. Specifically, 13,319,035 reads produced 359,531 unique sRNAs including rRNA, tRNA, miRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and unannotated sRNAs. Sequence analysis identified 96 conserved miRNAs belonging to 36 miRNA families and 576 novel miRNAs. qRT-PCR confirmed that the miRNAs were expressed during skotomorphogenesis similar to the trends shown by the Solexa sequencing results. A total of 2013 potential targets were predicted, and the targets of BrmiR157, BrmiR159 and BrmiR160 were proved to be regulated by miRNA-guided cleavage. These results show that specific regulatory miRNAs are present in skotomorphogenic seedlings of turnip and may play important roles in growth, development, and response to dark environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号