首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow of carbon and nutrients from plant production into detrital food webs is mediated by microbial enzymes released into the environment (ecoenzymes). Ecoenzymatic activities are linked to both microbial metabolism and environmental resource availability. In this paper, we extend the theoretical and empirical framework for ecoenzymatic stoichiometry from nutrient availability to carbon composition by relating ratios of ??-1,4-glucosidase (BG), acid (alkaline) phosphatase (AP), ??-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP) and phenol oxidase (POX) activities in soils to measures of organic matter recalcitrance, using data from 28 ecosystems. BG and POX activities are uncorrelated even though both are required for lignocellulose degradation. However, the ratio of BG:POX activity is negatively correlated with the relative abundance of recalcitrant carbon. Unlike BG, POX activity is positively correlated with (NAG + LAP) and AP activities. We propose that the effect of organic matter recalcitrance on microbial C:N and C:P threshold element ratios (TER) can be represented by normalizing BG, AP and (NAG + LAP) activities to POX activity. The scaling relationships among these ratios indicate that the increasing recalcitrance of decomposing organic matter effectively reverses the growth rate hypothesis of stoichiometric theory by decreasing carbon and nutrient availability and slowing growth, which increases TERN:P. This effect is consistent with the narrow difference between the mean elemental C:N ratios of soil organic matter and microbial biomass and with the inhibitory effect of N enrichment on rates of decomposition and microbial metabolism for recalcitrant organic matter. From these findings, we propose a conceptual framework for bottom-up decomposition models that integrate the stoichiometry of ecoenzymatic activities into general theories of ecology.  相似文献   

2.
The degradation of detrital organic matter and assimilation of carbon (C), nitrogen (N), and phosphorus (P) by heterotrophic microbial communities is mediated by enzymes released into the environment (ecoenzymes). For the attached microbial communities of soils and freshwater sediments, the activities of β-glucosidase, β-N-acetylglucosaminidase, leucine aminopeptidase, and phosphatase show consistent stoichiometric patterns. To determine whether similar constraints apply to planktonic communities, we assembled data from nine studies that include measurements of these enzyme activities along with microbial productivity. By normalizing enzyme activity to productivity, we directly compared the ecoenzymatic stoichiometry of aquatic biofilm and bacterioplankton communities. The relationships between β-glucosidase and α-glucosidase and β-glucosidase and β-N-acetylglucosaminidase were statistically indistinguishable for the two community types, while the relationships between β-glucosidase and phosphatase and β-glucosidase and leucine aminopeptidase significantly differed. For β-glucosidase vs. phosphatase, the differences in slope (biofilm 0.65, plankton 1.05) corresponded with differences in the mean elemental C:P ratio of microbial biomass (60 and 106, respectively). For β-glucosidase vs. leucine aminopeptidase, differences in slope (0.80 and 1.02) did not correspond to differences in the mean elemental C:N of biomass (8.6 and 6.6). β-N-Acetylglucosaminidase activity in biofilms was significantly greater than that of plankton, suggesting that aminosaccharides were a relatively more important N source for biofilms, perhaps because fungi are more abundant. The slopes of β-glucosidase vs. (β-N-acetylglucosaminidase + leucine aminopeptidase) regressions (biofilm 1.07, plankton 0.94) corresponded more closely to the estimated difference in mean biomass C:N. Despite major differences in physical structure and trophic organization, biofilm and plankton communities have similar ecoenzymatic stoichiometry in relation to productivity and biomass composition. These relationships can be integrated into the stoichiometric and metabolic theories of ecology and used to analyze community metabolism in relation to resource constraints.  相似文献   

3.
4.
在山西太岳山地区,向油松林土壤中分别添加生物炭、玉米秸秆、蒙古栎叶、油松叶、木屑等5种有机物,测定各处理的土壤养分、酶及微生物生物量等指标,研究外源有机物添加下土壤酶化学计量特征及微生物元素组成的内稳性。结果表明: 添加木屑显著增加了土壤N(17.1%)、P(37.6%)含量,显著增加了微生物生物量碳(118.0%)、氮(41.0%)、磷(176.6%)。C、N、P获取酶(β-1,4-葡萄糖苷酶、β-1,4-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶、酸性磷酸酶)活性总体上随添加有机物C/N值(生物炭<蒙古栎叶<油松叶<玉米秸秆<木屑)的增加而增加,其化学计量变化受土壤养分状态及微生物生物量的调控。酶活性相对比例及矢量特性表明,研究区微生物生长受到P的限制,且添加有机物没有缓解P的制约作用。微生物生物量碳、氮及化学计量比C∶N、C:P、N∶P属于绝对稳态型,而微生物生物量磷处于非稳态。微生物通过改变酶的分配策略保持微生物体元素及比例的相对稳定,仅有微生物生物量磷对土壤养分变化表现出不稳定性,可能因为P是研究区微生物生长的限制性元素。  相似文献   

5.
Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.  相似文献   

6.
Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual‐based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community‐driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.  相似文献   

7.
The relative activities of soil enzymes involved in mineralizing organic carbon (C), nitrogen (N), and phosphorus (P) reveal stoichiometric and energetic constraints on microbial biomass growth. Although tropical forests and grasslands are a major component of the global C cycle, the effects of soil nutrient availability on microbial activity and C dynamics in these ecosystems are poorly understood. To explore potential microbial nutrient limitation in relation to enzyme allocation in low latitude ecosystems, we performed a meta-analysis of acid/alkaline phosphatase (AP), β-1,4-glucosidase (BG), and β-1,4-N-acetyl-glucosaminidase (NAG) activities in tropical soils. We found that BG:AP and NAG:AP ratios in tropical soils are significantly lower than those of temperate ecosystems overall. The lowest BG:AP and NAG:AP ratios were associated with old or acid soils, consistent with greater biological phosphorus demand relative to P availability. Additionally, correlations between enzyme activities and mean annual temperature and precipitation suggest some climatic regulation of microbial enzyme allocation in tropical soils. We used the results of our analysis in conjunction with previously published data on soil and biomass C:N:P stoichiometry to parameterize a biogeochemical equilibrium model that relates microbial growth efficiency to extracellular enzyme activity. The model predicts low microbial growth efficiencies in P-limited soils, indicating that P availability may influence C cycling in the highly weathered soils that underlie many tropical ecosystems. Therefore, we suggest that P availability be included in models that simulate microbial enzyme allocation, biomass growth, and C mineralization.  相似文献   

8.
入侵植物紫茎泽兰根围土壤化学及微生物属性海拔变化格局 热带地区山地生态系统是外来植物入侵的重要区域,是研究外来植物扩散机制的“天然实验室”。本研究试图探明入侵植物紫茎泽兰(Ageratina adenophora)根围土壤化学(pH及土壤养分)和微生物(酶活性和细菌群落)特性沿海拔梯度的变化规律。本研究以哀牢山(1400–2400 m)不同海拔梯度分布的紫茎泽兰为研究对象,采集根围土,测定土壤有机碳及养分含量,以及植物根系碳和氮含量。分析与土壤有机碳、氮及磷循环的酶活性,通过计算土壤酶化学计量参数,探究微生物生长代谢利用碳、氮及磷的规律。借助高通量测序技术对16S rDNA的V4区测序,分析细菌群落结构。研究结果显示,海拔显著影响紫茎泽兰根系氮及及其根围土壤有机碳含量,且这些测量指标在海拔2000 m  出现拐点。处在低海拔,入侵植物快速生长耗竭土壤中相对缺乏的磷,磷素是限制微生物生长的重要养分元素;而在高海拔,微生物需要投入更多的能量降解有机质获取碳,导致微生物生长的碳限制。细菌群落β多样性及pH  是决定不同海拔酶化学计量参数差异的重要因子;变形菌门和酸杆菌门是决定微生物养分利用状况的主要细菌门类。这些结果阐明了不同海拔梯度上紫茎泽兰根围土壤微生物的养分利用规律,有助于认识入侵植物沿海拔扩散机制。  相似文献   

9.
The supplies of nutrients, and their elemental stoichiometry, can have significant impacts upon the structure and function of microbial communities. This review focuses on the effects of nutrient supplies on the biodegradation of organic matter, and on the dynamics of host-pathogen interactions. Analyses of data from the literature suggest significant effects of nitrogen:phosphorus supply ratios on the microbial decomposition of organic matter, and it is argued that these stoichiometric effects may have important implications for the fate and fluxes of carbon in natural ecosystems. In addition, it is shown that the supplies of nitrogen and phosphorus to the host can strongly influence the outcome of infections in both terrestrial and aquatic plants, suggesting that resource availability and resource supply ratios potentially may have significant effects on the health of many plant communities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
了解土壤胞外酶活性和酶计量的变化对评估山地生态系统土壤养分有效性和微生物的营养限制状况具有重要意义.然而,亚热带山地森林土壤微生物的营养限制状况对海拔梯度变化的响应及其驱动因素尚不清楚.本研究以武夷山不同海拔(1200~2000 m)黄山松林为对象,测定了土壤基本性质、微生物生物量以及与碳(C)、氮(N)、磷(P)循环...  相似文献   

11.
Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.  相似文献   

12.
Stoichiometry of soil enzyme activity at global scale   总被引:27,自引:0,他引:27  
Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.  相似文献   

13.
1. We compared the extracellular enzyme activity (EEA) of sediment microbial assemblages with sediment and water chemistry, gradients in agricultural nutrient loading (derived from principal component analyses), atmospheric deposition and hydrological turnover time in coastal wetlands of the Laurentian Great Lakes. 2. There were distinct increases in nutrient concentrations in the water and in atmospheric N deposition along the gradient from Lake Superior to Lake Ontario, but few differences between lakes in sediment carbon (C), nitrogen (N) or phosphorus (P). Wetland water and sediment chemistry were correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 3. The N : P ratio of wetland waters and sediments indicated that these coastal wetlands were N‐limited. Nutrient stoichiometry was correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 4. Extracellular enzyme activity was correlated with wetland sediment and water chemistry and stoichiometry, atmospheric N deposition, the agricultural stress gradient and the hydrological turnover time. The ratios of glycosidases to peptidases and phosphatases yielded estimates of nutrient limitation that agreed with those based solely on nutrient chemistry. 5. This study, the first to link microbial enzyme activities to regional‐scale anthropogenic stressors, suggests that quantities and ratios of microbial enzymes are directly related to the concentrations and ratios of limiting nutrients, and may be sensitive indicators of nutrient dynamics in wetland ecosystems, but further work is needed to elucidate these relationships.  相似文献   

14.
In desert ecosystems, microbial activity and associated nutrient cycles are driven primarily by water availability and secondarily by nutrient availability. This is especially apparent in the extremely low productivity cold deserts of the McMurdo Dry Valleys, Antarctica. In this region, sediments near streams and lakes provide the seasonally wet conditions necessary for microbial activity and nutrient cycling and thus transfer energy to higher organisms. However, aside from a few studies of soil respiration, rates of microbial activity throughout the region remain unexplored. We measured extracellular enzyme activity potentials (alkaline phosphatase, leucine-aminopeptidase, beta-glucosidase, phenol oxidase, and peroxidase) in soils adjacent to lakes and streams, expecting activity to be primarily related to soil water content, as well as time of season and organic matter supply. Phosphatase and beta-glucosidase activities were higher in shoreline than upland soils; however, potential rates were not correlated with soil water content. Instead, soil organic matter, salinity, and pH were the best predictors of microbial activity. Microbial nutrient limitation metrics estimated from extracellular enzyme activity were correlated with pH and salinity and exhibited similar patterns to previously published trends in soil P and N content. Compared to other terrestrial ecosystems, organic matter specific rates for leucine-aminopeptidase and oxidative enzyme activities were high, typical of alkaline desert soils. Phosphatase activity was close to the global mean whereas beta-glucosidase activity was extremely low, which may reflect the lack of vascular plant derived organic matter in the Dry Valleys. In this cold desert ecosystem, water availability promotes microbial activity, and microbial nutrient cycling potentials are related to soil geochemistry. Author contributions:   LHZ performed research, analyzed data, and wrote the paper; RLS contributed new methods and wrote the paper; JEB conceived/designed study, performed research and analyzed data; MNG conceived/designed study and performed research; CTV conceived/designed study and performed research.  相似文献   

15.
Soil extracellular enzymes mediate organic matter turnover and nutrient cycling yet remain little studied in one of Earth’s most rapidly changing, productive biomes: tropical forests. Using a long-term leaf litter and throughfall manipulation, we explored relationships between organic matter (OM) inputs, soil chemical properties and enzyme activities in a lowland tropical forest. We assayed six hydrolytic soil enzymes responsible for liberating carbon (C), nitrogen (N) and phosphorus (P), calculated enzyme activities and ratios in control plots versus treatments, and related these to soil biogeochemical variables. While leaf litter addition and removal tended to increase and decrease enzyme activities per gram soil, respectively, shifts in enzyme allocation patterns implied changes in relative nutrient constraints with altered OM inputs. Enzyme activity ratios in control plots suggested strong belowground P constraints; this was exacerbated when litter inputs were curtailed. Conversely, with double litter inputs, increased enzymatic investment in N acquisition indicated elevated N demand. Across all treatments, total soil C correlated more strongly with enzyme activities than soluble C fluxes, and enzyme ratios were sensitive to resource stoichiometry (soil C:N) and N availability (net N mineralization). Despite high annual precipitation in this site (MAP ~5 m), soil moisture positively correlated with five of six enzymes. Our results suggest resource availability regulates tropical soil enzyme activities, soil moisture plays an additional role even in very wet forests, and relative investment in C, N and P degrading enzymes in tropical soils will often be distinct from higher latitude ecosystems yet is sensitive to OM inputs.  相似文献   

16.
We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern Minnesota, USA. Ecoenzymatic stoichiometry was used to construct models for C use efficiency (CUE) and decomposition (M), and these were used to model respiration (Rm). Our goals were to determine the relative C, N, and P limitations on microbial processes and organic matter decomposition, and to identify environmental constraints on ecoenzymatic processes. Mean annual water, C, and P yields were greater in the fen, while N yields were similar in both the bog and fen. Soil chemistry differed between the bog and fen, and both watersheds exhibited significant differences among soil horizons. DHA and EEA differed by watersheds and soil horizons, CUE, M, and Rm differed only by soil horizons. C, N, or P limitations indicated by EEA stoichiometry were confirmed with orthogonal regressions of ecoenzyme pairs and enzyme vector analyses, and indicated greater N and P limitation in the bog than in the fen, with an overall tendency toward P-limitation in both the bog and fen. Ecoenzymatic stoichiometry, microbial respiration, and organic matter decomposition were responsive to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.  相似文献   

17.
Stoichiometric ratios of resources and consumers have been used to predict nutrient limitation across diverse terrestrial and aquatic ecosystems. In forested headwater streams, coarse and fine benthic organic matter (CBOM, FBOM) are primary basal resources for the food web, and the distribution and quality of these organic matter resources may therefore influence patterns of secondary production and nutrient cycling within stream networks or among biomes. We measured carbon (C), nitrogen (N), and phosphorus (P) content of CBOM and FBOM and calculated their stoichiometric ratios (C/N, C/P, N/P) from first- to fourth-order streams from tropical montane, temperate deciduous, and boreal forests, and tallgrass prairie, to compare the magnitude and variability of these resource types among biomes. We then used the ratios to predict nutritional limitations for consumers of each resource type. Across biomes, CBOM had consistently higher %C and %N, and higher and more variable C/N and C/P than FBOM, suggesting that microbial processing results in more tightly constrained elemental composition in FBOM than in CBOM. Biome-specific differences were observed in %P and N/P between the two resource pools; CBOM was lower in %P but higher in N/P than FBOM in the tropical montane and temperate deciduous forest biomes, while CBOM was higher in %P but similar in N/P than FBOM in the grassland and boreal forest biomes. Stable 13C isotopes suggest that FBOM likely derives from CBOM in tropical and temperate deciduous forest, but that additional non-detrital components may contribute to FBOM in boreal forests and grasslands. Comparisons of stoichiometric ratios of CBOM and FBOM to estimated needs of aquatic detritivores suggest that shredders feeding on CBOM are more likely to experience nutrient (N and/or P) than C limitation, whereas collector–gatherers consuming FBOM are more likely to experience C than N and/or P limitation. Our results suggest that differences in basal resource elemental content and stoichiometric ratios have the potential to affect consumer production and ecosystem rates of C, N, and P cycling in relatively consistent ways across diverse biomes.  相似文献   

18.
探讨外源养分的输入对土壤系统内碳、氮、磷化学计量特征的影响,对于深刻认识农田土壤有机碳(C)和养分循环及其相互作用过程具有重要意义。以26年的农田长期定位施肥试验为平台,分析长期不同施肥条件下土壤、有机态及微生物生物量碳、氮、磷含量及其化学计量学特征,并根据内稳性模型y=c x~(1/H)计算其化学计量内稳性指数H。结果表明:与长期撂荒处理(CK_0)相比,种植作物条件下26年化肥配施有机肥处理(MNPK和1.5MNPK)显著降低微生物生物量氮含量,但显著提高了微生物生物量磷的含量。相对于撂荒处理,即使长期配施化肥磷处理(NP、PK、NPK),其土壤有机磷降低显著。对于C∶N比而言,化肥配施有机物料处理(秸秆或有机肥)的土壤C∶N比、有机质C∶N及微生物生物量C∶N比均显著低于化肥处理(N、NP、PK和NPK)。对于C∶P比而言,相对于撂荒处理,26年施用磷肥(化肥磷或有机磷)显著降低了土壤C∶P比和微生物生物量C∶P比,而CK和偏施化肥处理(N、NP和PK)显著降低了土壤有机质C∶P比。对于土壤N∶P比而言,撂荒处理土壤N∶P比显著高于其他处理,而撂荒处理土壤有机质N∶P比显著高于CK和化肥处理,表明不施肥或化肥条件下作物种植加剧了土壤有机质中氮素的消耗。微生物生物量C∶N、C∶P、N∶P比的内稳性指数H分别为0.24、0.75、0.64,不具有内稳性特征。微生物生物量C∶N、C∶P、N∶P比分别与土壤C∶N、C∶P、N∶P比呈显著正相关关系,但与土壤有机质碳氮磷化学计量比之间无显著相关性。表明土壤碳、氮、磷元素的改变会直接导致微生物生物量碳、氮、磷化学计量比的改变,但微生物生物量碳氮磷化学计量比对土壤有机质碳氮磷化学计量比无显著影响,土壤有机质的碳氮磷计量比可能更多是受到作物和施肥等养分管理措施的影响。  相似文献   

19.
Soil microbial carbon use efficiency (CUE) is a crucial parameter that can be used to evaluate the partitioning of soil carbon (C) between microbial growth and respiration. However, general patterns of microbial CUE among terrestrial ecosystems (e.g., farmland, grassland, and forest) remain controversial. To address this knowledge gap, data from 41 study sites (n = 197 soil samples) including 58 farmlands, 95 forests, and 44 grasslands were collected and analyzed to estimate microbial CUEs using a biogeochemical equilibrium model. We also evaluated the metabolic limitations of microbial growth using an enzyme vector model and the drivers of CUE across different ecosystems. The CUEs obtained from soils of farmland, forest, and grassland ecosystems were significantly different with means of 0.39, 0.33, and 0.42, respectively, illustrating that grassland soils exhibited higher microbial C sequestration potentials (p < .05). Microbial metabolic limitations were also distinct in these ecosystems, and carbon limitation was dominant exhibiting strong negative effects on CUE. Exoenzyme stoichiometry played a greater role in impacting CUE values than soil elemental stoichiometry within each ecosystem. Specifically, soil exoenzymatic ratios of C:phosphorus (P) acquisition activities (EEAC:P) and the exoenzymatic ratio of C:nitrogen (N) acquisition activities (EEAC:N) imparted strong negative effects on soil microbial CUE in grassland and forest ecosystems, respectively. But in farmland soils, EEAC:P exhibited greater positive effects, showing that resource constraints could regulate microbial resource allocation with discriminating patterns across terrestrial ecosystems. Furthermore, mean annual temperature (MAT) rather than mean annual precipitation (MAP) was a critical climate factor affecting CUE, and soil pH as a major factor remained positive to drive the changes in microbial CUE within ecosystems. This research illustrates a conceptual framework of microbial CUEs in terrestrial ecosystems and provides the theoretical evidence to improve soil microbial C sequestration capacity in response to global change.  相似文献   

20.
氮沉降持续增加背景下土壤C∶N∶P化学计量比和pH环境等的改变及其可能的土壤微生物学机制已经成为陆地生态系统与全球变化研究的新生长点和科学研究前沿.以生态化学计量学和土壤微生物生态学为理论基础,综述了氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制的基本理论、最新进展、研究热点与难点,旨在促进全球变化背景下陆地生态系统地下生态学的研究.氮沉降持续增加会导致森林生态系统磷循环加速,导致磷限制.氮沉降不但改变森林土壤有机质和凋落物的C∶N∶P化学计量比和降低土壤pH值,而且改变土壤微生物生物量碳氮磷、细菌、真菌和放线菌的组成以及影响碳氮磷分解的关键酶活性.氮沉降对森林土壤有机质和凋落物分解的影响表现为促进、抑制和无影响,其影响的差异可能来源于微生物效应的不同.叶片在凋落前有显著的氮磷养分回收,但是根无明显的养分回收,造成土壤有机质和凋落物的C∶N∶P化学计量比存在明显差异.基于DNA/RNA等分子生物学方法为土壤微生物生态学研究提供了强有力的手段,将促进氮沉降对森林土壤有机质和凋落物化学计量比改变的微生物学机制研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号