首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The different physiological responses to heat stress in calli from two ecotypes of common reed (Phragmites communis Trin.) plants (dune reed (DR) and swamp reed (SR)) were studied. The relative water content, the relative growth rate, cell viability, membrane permeability (MP), H2O2 content, MDA content, proline level, and the activities of enzymes, such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and lipoxygenase (LOX) were assayed. Results showed that under heat stress, DR callus could maintain the higher relative growth rate and cell viability than SR callus, while H2O2 content, MDA content, and MP in SR callus increased more than in DR callus. The activities of antioxidant enzymes, such as SOD, CAT, POD, APX, and GR in two calli were enhanced by high temperature. However, antioxidant enzymes in DR callus showed the higher thermal stability than those in SR callus. LOX activity increased more in SR callus than in DR callus under heat stress. High temperature markedly elevated proline content in DR callus whereas had no effect on that in SR callus. Taken together, DR callus is more thermotolerant than SR callus, which might be due to the higher activity of antioxidant enzymes and proline level compared with SR callus under heat stress.  相似文献   

2.
Wang X  Ma Y  Huang C  Wan Q  Li N  Bi Y 《Planta》2008,227(3):611-623
In the present study, we investigated the role of glucose-6-phosphate dehydrogenase (G6PDH) in regulating the levels of reduced form of glutathione (GSH) to the tolerance of calli from two reed ecotypes, Phragmites communis Trin. dune reed (DR) and swamp reed (SR), in a long-term salt stress. G6PDH activity was higher in SR callus than that of DR callus under 50–150 mM NaCl treatments. In contrast, at higher NaCl concentrations (300–600 mM), G6PDH activity was lower in SR callus. A similar profile was observed in GSH contents, glutathione reductase (GR) and glutathione peroxidase (GPX) activities in both salt-stressed calli. After G6PDH activity and expression were reduced in glycerol treatments, GSH contents and GR and GPX activity decreased strongly in both calli. Simultaneously, NaCl-induced hydrogen peroxide (H2O2) accumulation was also abolished. Exogenous application of H2O2 increased G6PDH, GR, and GPX activities and GSH contents in the control conditions and glycerol treatment. Diphenylene iodonium (DPI), a plasma membrane (PM) NADPH oxidase inhibitor, which counteracted NaCl-induced H2O2 accumulation, decreased these enzymes activities and GSH contents. Furthermore, exogenous application of H2O2 abolished the N-acetyl-l-cysteine (NAC)-induced decrease in G6PDH activity, and DPI suppressed the effect of buthionine sulfoximine (BSO) on induction of G6PDH activity. Western-blot analyses showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI in DR callus. Taken together, G6PDH activity involved in GSH maintenance and H2O2 accumulation under salt stress. And H2O2 regulated G6PDH, GR, and GPX activities to maintain GSH levels. In the process, G6PDH plays a central role.  相似文献   

3.
The properties and kinetics of ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activities of plasma membrane H+-ATPase from the two reed ecot ypes, swamp reed (SR) and dune reed (DR), were investigated. The pH optimum of the plasma membrane H+-ATPase in both reed ecotypes was similar but the sensitivity of the enzyme to the reaction medium pH seemed to be higher in DR than that in SR. Compared to SR, the DR exhibited a higher Vmax value for ATP hydrolysis whereas the Km value was almost similar in both reed ecotypes. The PNPP hydrolysis of the plasma membrane H+-ATPase was also studied in both reed ecotypes at increasing PNPP concentrations. Km and Vmax for PNPP hydrolysis showed great differences in the two reed ecotypes and in DR the Km and Vmax values were 2- and 10-fold, respectively, higher than those in SR. The ATP hydrolysis activity of the plasma membrane was markedly inhibited by hydroxylamine in both reed ecotypes, and the percentage inhibition of ATP hydrolysis rate seemed higher in DR than that in SR. In addition, the structure or property of the C-terminal end of the plasma membrane H+-ATPase were also different in the two reed ecotypes. These data suggest that different isoforms of the plasma membrane H+-ATPase might be developed and involved in the adaptation of the plant to the long-term drought-prone habitat.This research was supported by Natural Science Foundation of China (No. 30270238 & No. 30470274) and the National Key Basic Research Special Funds of China (G1999011705).  相似文献   

4.
The antioxidant defense system in three ecotypes of reed (Phragmites communis Trin.), swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSMR), from northwest China were investigated. The HSMR possessed the highest ratio of ascorbate (ASC)/dehydroascorbate (DHA) and activities of superoxide dismutase (SOD) and catalase among the three reed ecotypes, whereas, the DR exhibited the highest ratio of glutathione/glutathione disulfide and activities of ASC peroxidase (APX) and DHA reductase. Malondialdehyde and hydrogen peroxide contents were highest in HSMR, intermediate in SR, and lowest in DR. In addition, different isoenzymes of glutathion reductase, APX, SOD and DHA were also observed in three reed ecotypes.  相似文献   

5.
H. Gong  G. Chen  F. Li  X. Wang  Y. Hu  Y. Bi 《Biologia Plantarum》2012,56(3):422-430
Glucose-6-phosphate dehydrogenase (G6PDH) has been implicated in supplying reduced nicotine amide cofactors for biochemical reactions and in modulating the redox state of cells. In this study, the role of G6PDH in thermotolerance of the calli from Przewalskia tangutica and tobacco (Nicotiana tabacum L.) was investigated. Results showed that Przewalskia tangutica callus was more sensitive to heat stress than tobacco callus. The activity of G6PDH and antioxidant enzymes (ascorbate peroxidase, catalase, peroxidase and superoxide dismutase) in calli from Przewalskia tangutica and tobacco increased after 40 °C treatment, although two calli exhibited a difference in the degree and timing of response to heat stress. When G6PDH was partially inhibited by glucosamine pretreatment, the antioxidant enzyme activities and thermotolerance in both calli significantly decreased. Simultaneously, the heat-induced H2O2 content and the plasma membrane NADPH oxidase activity were also reduced. Application of H2O2 increased the activity of G6PDH and antioxidant enzymes in both calli. Diphenylene iodonium, a NADPH oxidase inhibitor, counteracted heatinduced H2O2 accumulation and reduced the heat-induced activity of G6PDH and antioxidant enzymes. Moreover, exogenous H2O2 was effective in restoring the activity of G6PDH and antioxidant enzymes after glucosamine pretreatment. Western blot analysis showed that G6PDH gene expression in both calli was also stimulated by heat and H2O2, and blocked by DPI and glucosamine under heat stress. Taken together, under heat stress G6PDH promoted H2O2 accumulation via NADPH oxidase and the elevated H2O2 was involved in regulating the activity of antioxidant enzymes, which in turn facilitate to maintain the steady-state H2O2 level and protect plants from the oxidative damage.  相似文献   

6.
7.
The redox system and H+-transport activities in the plasma membranes from two ecotypes of reed (Phragmites communis Trin.), named swamp reed (SR) and dune reed (DR) according to their habitats, were investigated. Compared to the SR, the DR possessed the very high rates of NADH oxidation and Fe(CN)6 3– and EDTA-Fe3+ reduction when NADH was taken as the electron donor. As NADPH was an electron donor, the rate of NADPH oxidation was also significantly higher in the DR than that in the SR. In addition, the H+-transport activity in the plasma membranes was also significantly higher in the DR than in the SR.  相似文献   

8.
To investigate the variations of anatomical and photosynthetic carbon metabolic characteristics within one species in response to increasing soil water stress, leaf anatomical characteristics, gas exchange and the activity of key enzymes in photosynthesis and photorespiration were compared in different ecotypes of Phragmites communis growing in an oasis-desert transitional zone (ODTZ) from swamp habitat (plot 1–3) via heavy salt meadow (plot 4–7) and light salt meadow habitat (plot 8–9) to dune habitat (plot 10–13) in Northwest China. The results showed that interveinal distance (ID) decreased with increasing water stress except that in plots of dune reed (DR). Vein mean diameter (VMD) in plot 10, 11 and 12 of the DR was significantly larger than that in other ecotypes. Leaf specific porosity (LSP) enhanced from plot 4 to plot 13 from heave salt meadow reed (HSMR) to light salt meadow reed (LSMR) and to DR. Chlorophyll fluorescence in bundle sheath cells were microscopically found in four ecotypes, especially significantly in the DR. Net CO2 assimilation rate (A n) dropped rapidly from the swamp reed (SR) to the HSMR and then increased progressively from the LSMR to the DR. Stomatal conductance (g s) decreased and the water use efficiency (WUE) rose from the wet to the dry ecotypes. Sensitivity of g s to intercellular CO2 concentration (C i) increased, but glycolate oxidase (GO) activity gradually reduced with increasing soil water deficiency. The RuBPCase activity did not reduce in four ecotypes even in DR, but, the PEPCase and NAD-ME activities as well as the ratio of PEPCase/RuBPCase were gradually enhanced with increasing soil water stress. We concluded that anatomical and photosynthetic carbon assimilating characteristics in P. communis were developing to the direction of C4 metabolism in response to the increasing drought stress in desert areas. The DR enduring severe water stress had more C4 like photosynthetic features than the HSMR and LSMR as well as SR, according to significantly increased VMD and LSP and higher g s sensitivity to C i as well as higher PEPCase activity and lower GO activity in the DR.  相似文献   

9.
Callus cultures were used to investigate and delineate responses of potato to iron (Fe) deficiency conditions over different culture durations. The morphological responses included chlorotic symptoms, reduced fresh weight and area of callus growth on Fe-deficient medium compared to calli grown under Fe sufficient conditions. Biochemically, potato calli under Fe deficit exhibited decreases in chlorophyll and carotenoid contents, reduction in activities of antioxidant enzymes (peroxidase, catalase and ascorbate peroxidase), as well as an increase in ferric chelate reductase (FCR) activity, lipid peroxidation, phenolic production and hydrogen peroxide (H2O2) level. Perls staining revealed sparse Fe distribution in Fe-deficient callus cells whereas Fe was widely distributed and intensely stained among numerous actively dividing cells in Fe-sufficient calli. These responses of calli to Fe deficiency were more pronounced with prolonged exposure to such stress leading to severe chlorosis and/or death of cells in chlorosis-susceptible calli but potential chlorosis-tolerant callus cells maintained their greenness and viability. Over a prolonged period in culture, significantly positive correlations were found among callus fresh weight, chlorophyll and carotenoid contents, antioxidant enzyme activities and lipid peroxidation as Fe supplies to the medium was increased. FCR activity was strongly correlated in a negative manner with Fe deficiency, chlorophyll content and peroxidase activity. The responses of calli to Fe supply can serve as reliable indicators for detecting chlorosis tolerance and/or nutrient deficiency stress.  相似文献   

10.
11.
Nitraria tangutorum Bobr., a typical desert halophyte, plays an important ecological role because of its superior tolerance to severe drought and high salinity. Very little is known about the physiological adaptative mechanism of this species to environmental stresses. The aim of this study was to investigate the changes of antioxidant enzyme activities and the regulatory mechanism of ascorbate peroxidase (APX) activity in the calli from Nitraria tangutorum Bobr. after treatment with different NaCl concentrations. The activities of superoxide dismutase (SOD) and catalase (CAT) significantly increased in the calli treated with NaCl, while the peroxidase activity decreased. APX activity was also elevated significantly in response to NaCl, but the increase was partly abolished by H2O2 scavenger dimethylthiourea (DMTU). Furthermore, the excitatory effect of salinity on APX could be alleviated by the addition of exogenous CAT and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor diphenylene iodonium, indicating that the modulation of the APX activity in Nitraria tangutorum Bobr. calli might be associated with NADPH oxidase-dependent H2O2 generation. Measurement and analysis using fluorescent dye 2′,7′-dichlorodihydrofluorescein diacetate showed the increase of H2O2 content in salinity-treated calli. The investigation of NADPH-dependent O2 production in plasma membrane (PM) vesicles isolated from Nitraria tangutorum Bobr. calli revealed that salinity treatment stimulated NADPH oxidase activity. In conclusion, these results suggest that the higher activities of antioxidant enzymes play an important role in the salt tolerance of Nitraria tangutorum Bobr. calli and that the extracellular production of H2O2, depending on the excitation of PM NADPH oxidase, is responsible for enhancing the APX activity in Nitraria tangutorum Bobr. calli under salinity stress.  相似文献   

12.
Differences in leaf interveinal distances, chloroplasts distribution in bundle sheath cells (BSC) and activities of C4 photosynthetic enzymes in the leaves of three ecotypes of Phragmites communis Trinius, namely swamp reed (SR), heavy salt meadow reed (HSMR) and dune reed (DR), occurring in the desert region of northwest China were investigated. The two terrestrial ecotypes, DR and HSMR, had denser vascular system, more and longer BSC chloroplasts and higher capacity of CO2 concentrating mechanism of NAD-ME subtype as compared with the SR ecotype. The enhanced NADP-ME pathway in the HSMR might contribute to its adaptation to the salinity habitat.  相似文献   

13.
不同生境两种生态型芦苇的抗氧化系统   总被引:11,自引:1,他引:10  
以分布于甘肃临泽平川乡的两种芦苇生态型——水生芦苇(水芦)和重度盐化草甸芦苇(盐芦)叶片为材料,研究了其抗氧化系统的特征。结果表明,与水芦相比,盐芦中未出现活性氧和MDA(丙二醛)的积累,抗氧化酶SOD(超氧化物歧化酶)、CAT(过氧化氢酶)、POD(过氧化物酶)和APX(抗坏血酸过氧化物酶)的活性显著升高。总抗坏血酸和类胡萝卜素含量在两种生态型芦苇中没有差异,但还原型抗坏血酸和总谷胱甘肽含量在盐芦中显著升高。而且,盐芦的LOX(脂氧合酶)活性比水芦低。这些结果表明,盐芦中有效的抗氧化防御系统对抵抗盐渍胁迫起着重要的作用。此外,盐芦中高活性的Ca^2 -和Mg^2 -ATPase对细胞中过多离子的转运以及避免离子毒害起着重要的作用。  相似文献   

14.
Zhu  X.Y.  Chen  G.C.  Zhang  C.L. 《Photosynthetica》2001,39(2):183-189
We compared chloroplast photochemical properties and activities of some chloroplast-localised enzymes in two ecotypes of Phragmites communis, swamp reed (SR, C3-like) and dune reed (DR, C4-like) plants growing in the desert region of north-west China. Electron transport rates of whole electron transport chain and photosystem (PS) 2 were remarkably lower in DR chloroplasts. However, the electron transport rate for PS1 in DR chloroplasts was more than 90 % of the activity similar in the SR chloroplasts. Activities of Mg2+-ATPase and cyclic and non-cyclic photophosphorylations were higher in DR chloroplasts than in the SR ones. The activities of chloroplast superoxide dismutase (SOD) and ascorbate peroxidase (APX), both localised at or near the PS1 complex and serving to scavenge active oxygen around PS1, and the content of ascorbic acid, a special substrate of APX in chloroplast, were all higher in DR chloroplasts. Hence reed, a hydrophytic plant, when subjected to intense selection pressure in dune habitat, elevates its cyclic electron flow around PS1. In consequence, it provides extra ATP required by C4 photosynthesis. Combined high activities of active oxygen scavenging components in DR chloroplasts might improve protection of photosynthetic apparatus, especially PS1, from the damage of reactive oxygen species. This offers new explanation of photosynthetic performance of plant adaptation to long-term natural drought habitat, which is different from those, subjected to the short-term stress treatment or even to the artificial field drought.  相似文献   

15.
Genetic engineering for heat stress tolerance can promote crop growth and improve yield. One wheat (Triticum aestivum L.) line Y16 (wild type) and two transgenic plants (Y16-3 and Y16-46) that express Hpa110-42, a functional fragment of harpin protein, were used in this study to investigate their possible abiotic stress tolerance under heat stress. Results showed that enhanced thermotolerance was observed in the Y16-3 and Y16-46 lines over the control wheat under stress conditions. However, this increased stress tolerance was significantly abolished by specific inhibitors such as fluridone or sodium tungstate (i.e., arrests abscisic acid (ABA) biosynthesis) and EGTA or La3+ (i.e., arrests Ca2+ signaling pathway) under heat exposure. By contrast, high activities of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbate peroxidase (but not peroxidase) and low levels of oxidative damage (thiobarbituric acid reactive substance (TBARS) and chlorophyll) were detected in transgenic wheat lines compared with the control plant under stress exposure. However, this significant difference diminished after the addition of these specific inhibitors. Furthermore, a slight increase of H2O2 was observed in the transgenic plant, instead of the control, without the addition of chemicals under heat stress. These results suggested that antioxidant enzymes, calcium, and ABA signaling pathways were involved in this Hpa110–42-mediated thermotolerance of transgenic wheat plants under stress exposure. Finally, a hypothetical model based on H2O2 signaling was proposed to illustrate the possible mechanism of this enhanced heat stress tolerance.  相似文献   

16.
The objective of this study was to evaluate the effects of abscisic acid (ABA) related to the increase of water-stress tolerance in two drought contrasting maize hybrids: DKB 390 (tolerant) and BRS 1030 (sensitive). The characterization of water status (pre-dawn leaf water potential, Ψpd; midday leaf water potential, Ψmd and stem water potential, Ψst) and antioxidant enzyme activity was conducted on greenhouse grown plants. The ABA, hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents were also analyzed. Water deficit was imposed for 10 days at the flowering stage and a dosage of 100 μM ABA was applied to plant canopy. Measurements were taken during 10 days after the water recovery. With 5 days of stress, the tolerant hybrid showed lower MDA content, decrease in the water status, and higher activity of the enzymes superoxide dismutase, catalase, ascorbate peroxidase, as well as guaiacol, glutathione reductase, dehydroascorbate reductase, polyphenol oxidase, and l-phenylalanine ammonia-lyase, as compared to the sensitive hybrid. With 10 days of stress, DKB 390 had a decrease in the activity of enzymes whereas BRS 1030 showed a higher activity. In addition, the latter showed greater amounts of H2O2 and MDA. ABA application led to a higher tolerance only in DKB 390, due to the increase of water status and the enzymatic activity, mainly the catalase.  相似文献   

17.
The effect of foliar pretreatment by hydrogen peroxide (H2O2) at low concentrations of 0, 5, 10, and 15 mM on the chilling tolerance of two Zoysia cultivars, manilagrass (Zoysia matrella) and mascarenegrass (Zoysia tenuifolia), was studied. The optimal concentration for H2O2 pretreatment was 10 mM, as demonstrated by the lowest malondialdehyde (MDA) content and electrolyte leakage (EL) levels and higher protein content under chilling stress (7°C/2°C, day/night). Prior to initiation of chilling, exogenous 10 mM H2O2 significantly increased catalase (CAT), ascorbate peroxidase (APX), glutathione-dependent peroxidases (GPX), and glutathione-S-transferase (GST) activities in manilagrass, and guaiacol peroxidase (POD), APX, and glutathione reductase (GR) activities in mascarenegrass, suggesting that H2O2 may act as a signaling molecule, inducing protective metabolic responses against further oxidative damage due to chilling. Under further stress, optimal pretreatments alleviated the increase of H2O2 level and the decrease of turfgrass quality, and improved CAT, POD, APX, GR, and GPX activities, with especially significant enhancement of APX and GPX activities from the initiation to end of chilling. These antioxidative enzymes were likely the important factors for acquisition of tolerance to chilling stress in the two Zoysia cultivars. Our results showed that pretreatment with H2O2 at appropriate concentration may improve the tolerance of warm-season Zoysia grasses to chilling stress, and that manilagrass had better tolerance to chilling, as evaluated by lower MDA and EL, and better turfgrass quality, regardless of the pretreatment applied.  相似文献   

18.
The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2 ?). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2 ?, antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.  相似文献   

19.
Zhao L  Zhang F  Guo J  Yang Y  Li B  Zhang L 《Plant physiology》2004,134(2):849-857
Calluses from two ecotypes of reed (Phragmites communis Trin.) plant (dune reed [DR] and swamp reed [SR]), which show different sensitivity to salinity, were used to study plant adaptations to salt stress. Under 200 mm NaCl treatment, the sodium (Na) percentage decreased, but the calcium percentage and the potassium (K) to Na ratio increased in the DR callus, whereas an opposite changing pattern was observed in the SR callus. Application of sodium nitroprusside (SNP), as a nitric oxide (NO) donor, revealed that NO affected element ratios in both DR and SR calluses in a concentration-dependent manner. N(omega)-nitro-l-arginine (an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (a specific NO scavenger) counteracted NO effect by increasing the Na percentage, decreasing the calcium percentage and the K to Na ratio. The increased activity of plasma membrane (PM) H(+)-ATPase caused by NaCl treatment in the DR callus was reversed by treatment with N(omega)-nitro-l-arginine and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde. Western-blot analysis demonstrated that NO stimulated the expression of PM H(+)-ATPase in both DR and SR calluses. These results indicate that NO serves as a signal in inducing salt resistance by increasing the K to Na ratio, which is dependent on the increased PM H(+)-ATPase activity.  相似文献   

20.
Cucumber (Cucumis sativus L.) varieties cv. Jinchun no. 4 (a North China ecotype) and cv. Lvfeng no. 6 (a South China ecotype) were cultivated to explore the effects of osmotic stress on the ultrastructure of chloroplasts and mitochondria, as well as to assess the possible protective effect of exogenous hydrogen peroxide (H2O2). Under osmotic stress induced by 10% polyethylene glycol 6000, 84.3% of the chloroplasts in Jinchun no. 4 were abnormal, whereas 88.6% were abnormal in Lvfeng no. 6. Abnormal mitochondria occurred in these two strains at rates of 78.5 and 87.1%, respectively. The stress condition disintegrated the membranes of most chloroplasts and mitochondria in the leaf cells of both cucumber ecotypes, and it also increased the malondialdehyde (MDA) content. We subjected the two cultivars to a combined treatment with H2O2 and osmotic stress and made the following observations: (1) Abnormal chloroplasts occurred at rates of 25.7 and 28.6%, and abnormal mitochondria were observed at rates of 22.9 and 32.8%, respectively. (2) Most of the investigated membranes were well organized in leaves of Jinchun no. 4 and Lvfeng no. 6, and the levels of endogenous H2O2, superoxide anion, and MDA were lower. Osmotic stress and exogenous H2O2 both increased the activities of antioxidative enzymes such as manganese superoxide dismutase, glutathione peroxidase, catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and the antioxidants ascorbate and reduced glutathione. The combined effect of osmotic stress and exogenous H2O2 resulted in the highest antioxidant activities in both cucumber ecotypes. We propose that exogenous H2O2 increases antioxidant activity in cucumber leaves and thereby decreases lipid peroxidation to some extent, thus protecting the ultrastructure of most chloroplasts and mitochondria under osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号