首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

3.
We have solved the crystal and molecular structures of hepatitis A viral (HAV) 3C proteinase, a cysteine peptidase having a chymotrypsin-like protein fold, in complex with each of three tetrapeptidyl-based methyl ketone inhibitors to resolutions beyond 1.4 A, the highest resolution to date for a 3C or a 3C-Like (e.g. SARS viral main proteinase) peptidase. The residues of the beta-hairpin motif (residues 138-158), an extension of two beta-strands of the C-terminal beta-barrel of HAV 3C are critical for the interactions between the enzyme and the tetrapeptide portion of these inhibitors that are analogous to the residues at the P4 to P1 positions in the natural substrates of picornaviral 3C proteinases. Unexpectedly, the Sgamma of Cys172 forms two covalent bonds with each inhibitor, yielding an unusual episulfide cation (thiiranium ring) stabilized by a nearby oxyanion. This result suggests a mechanism of inactivation of 3C peptidases by methyl ketone inhibitors that is distinct from that occurring in the structurally related serine proteinases or in the papain-like cysteine peptidases. It also provides insight into the mechanisms underlying both the inactivation of HAV 3C by these inhibitors and on the proteolysis of natural substrates by this viral cysteine peptidase.  相似文献   

4.
Cloning of a cysteine proteinase gene from Acanthamoeba culbertsoni   总被引:1,自引:0,他引:1  
  相似文献   

5.
A putative serine protease was identified among non-structural proteins of southern bean mosaic virus (SBMV) by sequence comparison with cellular and viral proteases. The predicted SBMV protease displayed a significant similarity to cysteine proteases of picornaviruses, providing a possible evolutionary link between the two enzyme classes. It is suggested that SBMV follows the general expression strategy characteristic of other positive-strand RNA viruses containing 5'-terminal covalently linked proteins (VPg), i.e. generation of functional proteins by polyprotein processing.  相似文献   

6.
CrmA is an unusual viral serpin that inhibits both cysteine and serine proteinases involved in the regulation of host inflammatory and apoptosis processes. It differs from other members of the serpin superfamily by having a reactive center loop that is one residue shorter, and by its apparent inability to form SDS-stable covalent complexes with cysteine proteinases. To obtain insight into the inhibitory mechanism of crmA, we determined the crystal structure of reactive center loop-cleaved crmA to 2.9 A resolution. The structure, which is the first of a viral serpin, suggests that crmA can inhibit cysteine proteinases by a mechanism analogous to that used by other serpins against serine proteinases. However, one striking difference from other serpins, which may be significant for in vivo function, is an additional highly charged antiparallel strand for b sheet A, whose sequence and length are unique to crmA.  相似文献   

7.
Non-structural protein 3 (NS3) is a multifunctional enzyme possessing serine protease, NTPase, and RNA unwinding activities that are required for hepatitis C viral (HCV) replication. HCV non-structural protein 4A (NS4A) binds to the N-terminal NS3 protease domain to stimulate NS3 serine protease activity. In addition, the NS3 protease domain enhances the RNA binding, ATPase, and RNA unwinding activities of the C-terminal NS3 helicase domain (NS3hel). To determine whether NS3hel enhances the NS3 serine protease activity, we purified truncated and full-length NS3-4A complexes and examined their serine protease activities under a variety of salt and pH conditions. Our results indicate that the helicase domain enhances serine protease activity, just as the protease domain enhances helicase activity. Thus, the two enzymatic domains of NS3-4A are highly interdependent. This is the first time that such a complete interdependence has been demonstrated for a multifunctional, single chain enzyme. NS3-4A domain interdependence has important implications for function during the viral lifecycle as well as for the design of inhibitor screens that target the NS3-4A protease.  相似文献   

8.
The effect of different protease inhibitors on the proteolytic processing of the plum pox potyvirus (PPV) polyprotein has been analyzed. Human cystatin C, an inhibitor of cysteine proteases, interfered with the outoprocessing of the viral papain-like cysteine protease HCPro. Unexpectedly, it also had an inhibitory effect on the autocatalytic cleavage of the Nla protease which, although it has a Cys residue in its active center, has been described as structurally related to serine proteases. Other protease inhibitors tested had no effect on any of the cleavage events analyzed.  相似文献   

9.
Human rhinoviruses, like other picornaviruses, encode a cysteine protease (designated 3C) which cleaves mainly at viral Gln-Gly pairs. There are significant areas of homology between picornavirus 3C cysteine proteases and cellular serine proteases (e.g. trypsin), suggesting a functional relationship between their catalytic regions. To test this functional relationship, we made single substitutions in human rhinovirus type 14 protease 3C at seven amino acid positions which are highly conserved in the 3C proteases of animal picornaviruses. Substitutions at either His-40, Asp-85, or Cys-146, equivalent to the trypsin catalytic triad His-57, Asp-102, and Ser-195, respectively, completely abolished 3C proteolytic activity. Single substitutions were also made at either Thr-141, Gly-158, His-160, or Gly-162, which are equivalent to the trypsin specificity pocket region. Only the mutant with a conservative Thr-141 to Ser substitution exhibited proteolytic activity, which was much reduced compared with the parent. These results, together with immunoprecipitation data which indicate that Asp-85, Thr-141, and Cys-146 lie in accessible surface regions, suggest that the catalytic mechanism of picornavirus 3C cysteine proteases is closely related to that of cellular trypsin-like serine proteases.  相似文献   

10.
Serratia proteamaculans HY-3 isolated from the digestive tract of a spider produces an extracellular protease named arazyme, with an estimated molecular mass of 51.5 kDa. The purified enzyme was characterized as having high activities at wide pH and temperature ranges. We further characterized biochemical features of the enzymatic reactions under various reaction conditions. The protease efficiently hydrolyzed a broad range of protein substrates including albumin, keratin, and collagen. The dependence of enzymatic activities on the presence of metal ions such as calcium and zinc indicated that the enzyme is a metalloprotease, together with the previous observation that the proteolytic activity of the enzyme was not inhibited by aspartate, cysteine, or serine protease inhibitors, but strongly inhibited by 1,10-phenanthroline and EDTA. The araA gene encoding the exoprotease was isolated as a 5.6 kb BamHl fragment after PCR amplification using degenerate primers and subsequent Southern hybridization. The nucleotide sequence revealed that the deduced amino acid sequences shared extensive similarity with those of the serralysin family of metalloproteases from other enteric bacteria. A gene (inh) encoding a putative protease inhibitor was also identified immediately adjacent to the araA structural gene.  相似文献   

11.
The 3C proteinases are a novel group of cysteine proteinases with a serine proteinase-like fold that are responsible for the bulk of polyprotein processing in the Picornaviridae. Because members of this viral family are to blame for several ongoing global pandemic problems (rhinovirus, hepatitis A virus) as well as sporadic outbreaks of more serious pathologies (poliovirus), there has been continuing interest over the last two decades in the development of antiviral therapies. The recent determination of the structure of two of the 3C proteinases by X-ray crystallography opens the door for the application of the latest advances in computer-assisted identification and design of anti-proteinase therapeutic/chemoprophylactic agents.  相似文献   

12.
K Ebnet  M D Kramer  M M Simon 《Genomics》1992,13(3):502-508
The mouse serine protease granzyme A is a member of a closely related family of T-cell-associated proteolytic enzymes, designated granzymes A-G. Previous studies have indicated that granzymes A and B are involved in various T-cell-mediated processes. Here we report the genomic organization of the granzyme A gene. We have cloned a 15-kb DNA fragment from a genomic library of a cloned CD8+ T-cell line and sequenced the exon-intron boundaries. The gene consists of five exons, and its genomic organization is very similar to that described for granzymes B, C, and F. In addition, we have sequenced 1.4 kb of the 5'-region and 1.1 kb of the 3'-region flanking the granzyme A gene. Putative promoter and enhancer elements were identified by sequence comparison with known consensus sequences. Some of these regulatory elements seem to be associated exclusively with granzyme A, whereas others are shared by members of the granzyme family.  相似文献   

13.
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.  相似文献   

14.
15.
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge.  相似文献   

16.
Sarcocystis neurona merozoites were examined for their ability to invade and divide in bovine turbinate (BT) cell cultures after treatment with cysteine (iodoacetamide), aspartic (pepstatin A), metallo-(1,10-phenanthroline and ethylene glycol-bis(aminoethylether)-tetraacetic acid [EGTA]), or serine (4-[2-aminoethyl]-benzenesulfonyl fluoride hydrochloride [AEBSF], phenylmethane sulphonyl fluoride [PMSF], and tosyl lysyl chloramethyl ketone [TLCK]) protease inhibitors. Significant (P < 0.01) inhibition of serine protease activity by PMSF and TLCK led to a reduction of 86 and 78% in merozoites produced in BT cell cultures, respectively, whereas AEBSF (1 mM) led to a 68% reduction in merozoites produced in BT cell cultures and a reduction of 84 and 92% at higher AEBSF concentrations (2 and 3 mM, respectively). Pepstatin A and iodoacetamide failed to cause any inhibition in merozoite production, whereas 1,10-phenanthroline and EGTA caused slight, but not significant, inhibition at 6 and 17%, respectively. In zymograms, 2 bands of protease activity between 65- and 70-kDa molecular weight were seen. The protease activity was inhibited by AEBSF but not by E-64 (cysteine protease inhibitor), EGTA, iodoacetamide, or pepstatin A. In native zymograms, the protease activity was highest between a pH range of 8 and 10. These data suggest that merozoites of S. neurona have serine protease activity with a relative molecular weight range between 65 and 70 kDa and optimal pH range between 8 and 10, which is essential for host cell entry at least in vitro. The protease activity described here could be a potential target for chemotherapy development.  相似文献   

17.
Pestiviruses represent the first RNA viruses for which recombination with cellular protein-coding sequences has been reported. As a result of such recombinations cytopathogenic (cp) pestiviruses can develop from noncytopathogenic (noncp) viruses. In the case of bovine viral diarrhea virus (BVDV), the generation of cp mutants is linked to the induction of the lethal syndrome mucosal disease (MD) in cattle. The cp BVDV JaCP was isolated from an animal which had come down with MD. The genome of JaCP contains a novel kind of cellular insertion (LC3*) which is flanked by duplicated pestivirus sequences. Neither insertion nor duplication is present in the genome of the accompanying noncp virus JaNCP. As part of the viral polyprotein, the insertion in the JaCP genome is translated into a polypeptide almost identical to a fragment of light chain 3, a subunit of the microtubule-associated proteins 1A and 1B from the rat. Transient-expression studies revealed that the LC3* sequence is able to induce an additional cleavage of the viral polyprotein. The respective cleavage occurs directly downstream of the LC3*-encoded sequence and is not dependent on the NS3 serine protease. Insertion of LC3* into an infectious noncp pestivirus cDNA clone without duplicated viral sequences resulted in recovery of a defective cp virus able to replicate only in the presence of a noncp helper virus. In contrast, introduction of both insertion and duplication led to an autonomously replicating cp virus.  相似文献   

18.
We characterized the senescence-associated proteases of postharvest broccoli (Brassica oleracea L. var Green King) florets, using class-specific protease inhibitors and gelatin-polyacrylamide gel electrophoresis. Different classes of senescence-associated proteases in broccoli florets were partially characterized for the first time. Protease activity of broccoli florets was depressed by all the inhibitors and showed different inhibition curves during postharvest. The hydrolytic activity of metalloprotease (EC 3.4.24. - ) and serine protease (EC 3.4.21. - ) reached a maximum, 1 day after harvest (DAH), then decreased, while the hydrolytic activity of cysteine protease (EC 3.4.22. - ) and aspartic protease (EC 3.4.23. - ) increased throughout the postharvest senescence based on the calculated inhibition percentage of protease activity. The senescence-associated proteases were separated into seven endoprotease (EP) groups by gelatin-polyacryamide gel electrophoresis and classified into EP1 (metalloprotease), EP2 (metalloprotease and cysteine protease), EP3 (serine protease and aspartic protease), EP4, EP5, EP7 (cysteine protease), and EP6 (serine protease) based on the sensitivity of class-specific protease inhibitors. The proteases EP2, EP3, and EP4 were present throughout the postharvest stages. EP3 was the major EP at all times during senescence; EP4 intensity of activity increased after 2 DAH; EP6 and EP7 clearly increased after 4 DAH. Our results suggest that serine protease activity contributes to early stage (0-1 DAH) and late stage (4-5 DAH) of senescence; metalloprotease activity was involved in the early and intermediate stages (0-3 DAH) of senescence; and cysteine protease and aspartic protease activities participated in the whole process of broccoli senescence.  相似文献   

19.
A proteolytic activity was identified in Dugesia tigrina planaria using the chromogenic substrate Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu-O4MP. The activity of the enzyme increased four times during the regeneration and presented a maximum at 120 hr being higher in tail than head regenerating segments. The protease that displays this activity was purified from worms by a single step on pepstatin-agarose followed by gel-filtration high performance liquid chromatography. The purification resulted in a 34-fold increase in specific activity and the final yield was 10%. The active D. tigrina hydrolase appears to be a dimeric protein composed of identical subunits with 34 kDa associated by disulphide bridges similar to vertebrate cathepsin D. By SDS-PAGE several bands were detected but upon gel filtration HPLC one proteolytically active component, termed Asp-68, was detected and isolated. The maximal activity was observed in a range between pH 3.5-5.0 and the enzyme became inactivated at a pH value above 7.2. The purified enzyme was not inhibited by inhibitors from serine (aprotinin, TPCK, PMSF and TLCK), metallo (EDTA) and cysteine proteinase (E-64) classes. In contrast, inhibitors such as pepstatin, EPNP, and 4-beta-PMA efficiently inhibited the activity of the 68-kDa protease.  相似文献   

20.
Hepatitis A virus (HAV) 3C proteinase is a picornaviral cysteine proteinase that is essential for cleavage of the initially synthesized viral polyprotein precursor to mature fragments and is therefore required for viral replication in vivo. Since the enzyme generally recognizes peptide substrates with L-glutamine at the P1 site, four types of analogues having an azaglutamine residue were chemically synthesized: hydrazo-o-nitrophenylsulfenamides A (e.g. 16); frame-shifted hydrazo-o-nitrophenylsulfenamides B (e.g. 25-28); the azaglutamine sulfonamides C (e.g. 7, 8, 11, 12); and haloacetyl azaglutamine analogues 2 and 3. Testing of these compounds for inhibition of the HAV 3C proteinase employed a C24S mutant in which the non-essential surface cysteine was replaced with serine and which displays identical catalytic parameters to the wild-type enzyme. Sulfenamide 16 (type A) showed no significant inhibition. Sulfenamide 27 (type B) had an IC50 of ca 100 microM and gave time-dependent inactivation of the enzyme due to disulfide bond formation with the active site cysteine thiol, as demonstrated by electrospray mass spectrometry. Sulfonamide 8 (type C) was a weak competitive inhibitor with an IC50 of approximately 75 microM. The haloacetyl azaglutamine analogues 2 and 3 were time-dependent irreversible inactivators of HAV 3C proteinase with rate constants k(obs)/[I] of 680 M(-1) s(-1) and 870 M(-1) s(-1), respectively, and were shown to alkylate the active site thiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号