首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Matrix population models are widely used to describe population dynamics, conduct population viability analyses and derive management recommendations for plant populations. For endangered or invasive species, management decisions are often based on small demographic data sets. Hence, there is a need for population models which accurately assess population performance from such small data sets.
2. We used demographic data on two perennial herbs with different life histories to compare the accuracy and precision of the traditional matrix population model and the recently developed integral projection model (IPM) in relation to the amount of data.
3. For large data sets both matrix models and IPMs produced identical estimates of population growth rate (λ). However, for small data sets containing fewer than 300 individuals, IPMs often produced smaller bias and variance for λ than matrix models despite different matrix structures and sampling techniques used to construct the matrix population models.
4. Synthesis and applications . Our results suggest that the smaller bias and variance of λ estimates make IPMs preferable to matrix population models for small demographic data sets with a few hundred individuals. These results are likely to be applicable to a wide range of herbaceous, perennial plant species where demographic fate can be modelled as a function of a continuous state variable such as size. We recommend the use of IPMs to assess population performance and management strategies particularly for endangered or invasive perennial herbs where little demographic data are available.  相似文献   

2.
Madan K. Oli  Bertram Zinner 《Oikos》2001,93(3):376-387
Matrix population models have become popular tools in research areas as diverse as population dynamics, life history theory, wildlife management, and conservation biology. Two classes of matrix models are commonly used for demographic analysis of age‐structured populations: age‐structured (Leslie) matrix models, which require age‐specific demographic data, and partial life cycle models, which can be parameterized with partial demographic data. Partial life cycle models are easier to parameterize because data needed to estimate parameters for these models are collected much more easily than those needed to estimate age‐specific demographic parameters. Partial life cycle models also allow evaluation of the sensitivity of population growth rate to changes in ages at first and last reproduction, which cannot be done with age‐structured models. Timing of censuses relative to the birth‐pulse is an important consideration in discrete‐time population models but most existing partial life cycle models do not address this issue, nor do they allow fractional values of variables such as ages at first and last reproduction. Here, we fully develop a partial life cycle model appropriate for situations in which demographic data are collected immediately before the birth‐pulse (pre‐breeding census). Our pre‐breeding census partial life cycle model can be fully parameterized with five variables (age at maturity, age at last reproduction, juvenile survival rate, adult survival rate, and fertility), and it has some important applications even when age‐specific demographic data are available (e.g., perturbation analysis involving ages at first and last reproduction). We have extended the model to allow non‐integer values of ages at first and last reproduction, derived formulae for sensitivity analyses, and presented methods for estimating parameters for our pre‐breeding census partial life cycle model. We applied the age‐structured Leslie matrix model and our pre‐breeding census partial life cycle model to demographic data for several species of mammals. Our results suggest that dynamical properties of the age‐structured model are generally retained in our partial life cycle model, and that our pre‐breeding census partial life cycle model is an excellent proxy for the age‐structured Leslie matrix model.  相似文献   

3.
Stochastic matrix projection models are widely used to model age- or stage-structured populations with vital rates that fluctuate randomly over time. Practical applications of these models rest on qualitative properties such as the existence of a long term population growth rate, asymptotic log-normality of total population size, and weak ergodicity of population structure. We show here that these properties are shared by a general stochastic integral projection model, by using results in (Eveson in D. Phil. Thesis, University of Sussex, 1991, Eveson in Proc. Lond. Math. Soc. 70, 411-440, 1993) to extend the approach in (Lange and Holmes in J. Appl. Prob. 18, 325-344, 1981). Integral projection models allow individuals to be cross-classified by multiple attributes, either discrete or continuous, and allow the classification to change during the life cycle. These features are present in plant populations with size and age as important predictors of individual fate, populations with a persistent bank of dormant seeds or eggs, and animal species with complex life cycles. We also present a case-study based on a 6-year field study of the Illyrian thistle, Onopordum illyricum, to demonstrate how easily a stochastic integral model can be parameterized from field data and then applied using familiar matrix software and methods. Thistle demography is affected by multiple traits (size, age and a latent "quality" variable), which would be difficult to accommodate in a classical matrix model. We use the model to explore the evolution of size- and age-dependent flowering using an evolutionarily stable strategy (ESS) approach. We find close agreement between the observed flowering behavior and the predicted ESS from the stochastic model, whereas the ESS predicted from a deterministic version of the model is very different from observed flowering behavior. These results strongly suggest that the flowering strategy in O. illyricum is an adaptation to random between-year variation in vital rates.  相似文献   

4.
Individual heterogeneity in life history shapes eco‐evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population‐level processes. Recent developments have provided important steps towards their application to study eco‐evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long‐term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco‐evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco‐evolutionary dynamics.  相似文献   

5.
We explore the effects of temporal variation in multiple demographic rates on the joint evolution of delayed reproduction and seed dormancy using integral projection models (IPMs). To do this, we extend the standard IPM to include a discrete state variable representing the number of seeds in the seed bank, density-dependent recruitment, and temporal variation in demography. Parameter estimates for Carlina vulgaris and Carduus nutans are obtained from long-term studies. Carlina is relatively long lived and has a short-lived seed bank, whereas most Carduus plants flower in their first year and the seed bank is long lived. Using the evolutionarily stable strategy (ESS) approach, we predict the observed flowering and germination strategies. There is excellent agreement between the predictions and the field observations. The effects of temporal variation on the joint ESS are partitioned into components arising from nonlinear averaging (systematic changes in the mean resulting from the interaction between variability and nonlinearity) and nonequilibrium dynamics (fluctuations in fitness caused by temporal variation). This shows that temporal variation can have substantial effects on the observed flowering and germination strategies and that covariance between demographic processes is important. We extend the models to include spatial population structure and assess the robustness of the results from the nonspatial models.  相似文献   

6.
The evolution of life history strategies in density dependent situations is considered in both continuous time and discrete time models. The question of equilibrium and of competitively stable strategies, the “invasion” question, are shown to be completely determined by the number of offspring left at a fixed population size. Evolutionarily stable strategies are shown to maximize population size in a certain sense.  相似文献   

7.
A goal of life-history theory has been to understand what combination of demographic traits is maximized by natural selection. In practice, researchers usually choose either density-independent population growth rate, lambda, or lifetime reproductive success, R0 (expected number of offspring produced in a lifetime). Others have shown that the maxima of density-independent lambda and R0 are evolutionarily stable strategies under specific density-dependent conditions: population regulation by equal density dependence among all age classes for lambda and by density dependence on a single age class for R0. Here I extend these connections between density-independent optimization models and density-dependent invasion function models in two ways. First, I derive a new demographic function for which a maximum corresponds to attainability of the equilibrium strategy or stability of the mean rather than stability of the variance of the strategy distribution. Second, I show explicitly a continuous range of cases with maxima between those for the lambda and R0. Graphical and biological interpretations are given for an example model. Finally, exceptions to a putative life-history generality (from lambda and R0 models), that high early-life mortality selects for high iteroparity, are shown.  相似文献   

8.
Training in Population Ecology asks for scalable applications capable of embarking students on a trip from basic concepts to the projection of populations under the various effects of density dependence and stochasticity. Demography_Lab is an educational tool for teaching Population Ecology aspiring to cover such a wide range of objectives. The application uses stochastic models to evaluate the future of populations. Demography_Lab may accommodate a wide range of life cycles and can construct models for populations with and without an age or stage structure. Difference equations are used for unstructured populations and matrix models for structured populations. Both types of models operate in discrete time. Models can be very simple, constructed with very limited demographic information or parameter‐rich, with a complex density‐dependence structure and detailed effects of the different sources of stochasticity. Demography_Lab allows for deterministic projections, asymptotic analysis, the extraction of confidence intervals for demographic parameters, and stochastic projections. Stochastic population growth is evaluated using up to three sources of stochasticity: environmental and demographic stochasticity and sampling error in obtaining the projection matrix. The user has full control on the effect of stochasticity on vital rates. The effect of the three sources of stochasticity may be evaluated independently for each vital rate. The user has also full control on density dependence. It may be included as a ceiling population size controlling the number of individuals in the population or it may be evaluated independently for each vital rate. Sensitivity analysis can be done for the asymptotic population growth rate or for the probability of extinction. Elasticity of the probability of extinction may be evaluated in response to changes in vital rates, and in response to changes in the intensity of density dependence and environmental stochasticity.  相似文献   

9.
History matters when individual prior conditions contain important information about the fate of individuals. We present a general framework for demographic models which incorporates the effects of history on population dynamics. The framework incorporates prior condition into the i-state variable and includes an algorithm for constructing the population projection matrix from information on current state dynamics as a function of prior condition. Three biologically motivated classes of prior condition are included: prior stages, linear functions of current and prior stages, and equivalence classes of prior stages. Taking advantage of the matrix formulation of the model, we show how to calculate sensitivity and elasticity of any demographic outcome. Prior condition effects are a source of inter-individual variation in vital rates, i.e., individual heterogeneity. As an example, we construct and analyze a second-order model of Lathyrus vernus, a long-lived herb. We present population growth rate, the stable population distribution, the reproductive value vector, and the elasticity of λ to changes in the second-order transition rates. We quantify the contribution of prior conditions to the total heterogeneity in the stable population of Lathyrus using the entropy of the stable distribution.  相似文献   

10.
Understanding how multiple extrinsic (density‐independent) factors and intrinsic (density‐dependent) mechanisms influence population dynamics has become increasingly urgent in the face of rapidly changing climates. It is particularly unclear how multiple extrinsic factors with contrasting effects among seasons are related to declines in population numbers and changes in mean body size and whether there is a strong role for density‐dependence. The primary goal of this study was to identify the roles of seasonal variation in climate driven environmental direct effects (mean stream flow and temperature) vs. density‐dependence on population size and mean body size in eastern brook trout (Salvelinus fontinalis). We use data from a 10‐year capture‐mark‐recapture study of eastern brook trout in four streams in Western Massachusetts, USA to parameterize a discrete‐time population projection model. The model integrates matrix modeling techniques used to characterize discrete population structures (age, habitat type, and season) with integral projection models (IPMs) that characterize demographic rates as continuous functions of organismal traits (in this case body size). Using both stochastic and deterministic analyses we show that decreases in population size are due to changes in stream flow and temperature and that these changes are larger than what can be compensated for through density‐dependent responses. We also show that the declines are due mostly to increasing mean stream temperatures decreasing the survival of the youngest age class. In contrast, increases in mean body size over the same period are the result of indirect changes in density with a lesser direct role of climate‐driven environmental change.  相似文献   

11.
The paper presents the analysis of various mathematical models for dynamics of isolated population and for competition between two species. It is assumed that mortality is continuous and birth of individuals of new generations takes place in certain fixed moments. Influence of winter upon the population dynamics and conditions of classic discrete model "deduction" of population dynamics (in particular, Moran-Ricker and Hassel's models) are investigated. Dynamic regimes of models under various assumptions about the birth and death rates upon the population states are also examined. Analysis of models of isolated population dynamics with nonoverlapping generations showed the density changes regularly if the birth rate is constant. Moreover, there exists a unique global stable level and population size stabilizes asymptotically at this equilibrium, i.e. cycle and chaotic regimes in various discrete models depend on correlation between individual productivity and population state in previous time. When the correlation is exponential upon mean population size the discrete Hassel model is realized. Modification of basis model, based on the assumption that during winter survival/death changes are constant, showed that population size at global level is stable. Generally, the dependence of population rate upon "winter parameters" has nonlinear character. Nonparametric models of competition between two species does not vary if the individual productivity is constant. In a phase space there are several stable stationary states and population stabilizes at one or other level asymptotically. So, in discrete models of competition between two species oscillation can be explained by dependence of population growth rate on the population size at previous times.  相似文献   

12.
Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population's response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics.  相似文献   

13.
Life history theory predicts that trade-offs between growth and reproduction should be dictated by a population's mortality schedule. We tested this prediction with Arabis fecunda, a short-lived perennial that occurs in many different habitats in southwest Montana. Individuals produce either or both axillary or terminal inflorescences. Axillary-flowering plants are usually iteroparous and have smaller reproductive bouts, while terminal-flowering plants have larger reproductive bouts, and tend to be semelparous. We recorded size and fecundity of A. fecunda individuals from 1989 to 1993 in three different habitats. There was great variation in demographic and life history traits among the populations. A wide range of life history strategies among populations of A. fecunda is achieved through different proportions of axillary- and terminal-flowering plants. Arabis fecunda demonstrated a lower recruitment rate, higher survivorship, slower growth, and lower annual fecundity at the low-elevation site compared to the high-elevation site. At the low-elevation site population size was more stable, and elasticity analysis of matrix projection models indicated that adult survivorship was the most important demographic parameter contributing to population growth. This association of life history characters conforms to theoretical predictions.  相似文献   

14.
I present a computational approach to calculate the population growth rate, its sensitivity to life-history parameters and associated statistics like the stable population distribution and the reproductive value for exponentially growing populations, in which individual life history is described as a continuous development through time. The method is generally applicable to analyse population growth and performance for a wide range of individual life-history models, including cases in which the population consists of different types of individuals or in which the environment is fluctuating periodically. It complements comparable methods developed for discrete-time dynamics modelled with matrix or integral projection models. The basic idea behind the method is to use Lotka's integral equation for the population growth rate and compute the integral occurring in that equation by integrating an ordinary differential equation, analogous to recently derived methods to compute steady-states of physiologically structured population models. I illustrate application of the method using a number of published life-history models.  相似文献   

15.
Quantifying intraspecific demographic variation provides a powerful tool for exploring the diversity and evolution of life histories. We investigate how habitat-specific demographic variation and the production of multiple offspring types affect the population dynamics and evolution of delayed reproduction in a clonal perennial herb with monocarpic ramets (white hellebore). In this species, flowering ramets produce both seeds and asexual offspring. Data on ramet demography are used to parameterize integral projection models, which allow the effects of habitat-specific demographic variation and reproductive mode on population dynamics to be quantified. We then use the evolutionarily stable strategy (ESS) approach to predict the flowering strategy-the relationship between flowering probability and size. This approach is extended to allow offspring types to have different demographies and density-dependent responses. Our results demonstrate that the evolutionarily stable flowering strategies differ substantially among habitats and are in excellent agreement with the observed strategies. Reproductive mode, however, has little effect on the ESSs. Using analytical approximations, we show that flowering decisions are predominantly determined by the asymptotic size of individuals rather than variation in survival or size-fecundity relationships. We conclude that habitat is an important aspect of the selective environment and a significant factor in predicting the ESSs.  相似文献   

16.
Understanding actual and potential selection on traits of invasive species requires an assessment of the sources of variation in demographic rates. While some of this variation is assignable to environmental, biotic or historical factors, unexplained demographic variation also may play an important role. Even when sites and populations are chosen as replicates, the residual variation in demographic rates can lead to unexplained divergence of asymptotic and transient population dynamics. This kind of divergence could be important for understanding long- and short- term differences among populations of invasive species, but little is known about it. We investigated the demography of a small invasive tree Psidium cattleianum Sabine in the rainforest of Hawaiʻi at four sites chosen for their ecological similarity. Specifically, we parameterized and analyzed integral projection models (IPM) to investigate projected variability among replicate populations in: (1) total population size and annual per capita population growth rate during the transient and asymptotic periods; (2) population structure initially and asymptotically; (3) three key parameters that characterize transient dynamics (the weighted distance of the structure at each time step from the asymptotic structure, the strength of the sub-dominant relative to the dominant dynamics, and inherent cyclicity in the subdominant); and (4) proportional sensitivity (elasticity) of population growth rates (both asymptotic and transient) to perturbations of various components of the life cycle. We found substantial variability among replicate populations in all these aspects of the dynamics. We discuss potential consequences of variability across ecologically similar sites for management and evolutionary ecology in the exotic range of invasive species.  相似文献   

17.
A discrete, environmentally coupled, size-specific model of microbial population dynamics in continuous culture is presented. It is mathematically simpler than other models based on similar assumptions and lends itself to numerical and analytic solutions. It displays several phenomena which have been reported in the experimental literature but which are not well understood; specifically, a loose relationship between biomass and numbers (i.e., a time lag between mass growth and cell division) and a critical damping of biomass while numbers continue to oscillate. In addition, the model provides several new predictions: The stable biomass distribution is independent of the environmental factors considered in the model and uniformly distributes the biomass among the size classes. The rate of approach to stability and the frequency of waves through the size distributions are a function of the flow rate and the variance in rate of growth and size at division. The model should provide a useful basis for studying the effects of size specificity on the dynamics of microbial populations cultured in chemostats.  相似文献   

18.
Numerical methods are presented for a general age-structured population model with demographic rates depending on age and the total population size. The accuracy of these methods is established by solving problems for which alternate solution techniques are available and are used for comparison. The methods reliably solve test problems with a variety of dynamic behavior. Simulations of a blowfly population exhibit cyclic fluctuations, whereas a simulated squirrel population reaches a stable age distribution and stable equilibrium population size. Life-history attributes are easily studied from the computed solutions, and are discussed for these examples. Recovery of a stressed population back to equilibrium is examined by computing the transition in age structure, and the transient behavior of other properties of the population such as the per capita growth rate, the average age, and the generation length.  相似文献   

19.
Survival and fecundity are basic components of demography and therefore have a strong influence on population dynamics. These two key parameters and their relationship are crucial to understand the evolution of life histories. It remains, however, to be empirically established how life span, fecundity, and population dynamics are linked in different organism groups. We conducted a comparative study based on demographic data sets of 55 populations of 23 perennial herbs for which structured demographic models and among-year natural variation in demographic attributes were available. Life span (from 4 to 128 yr old), estimated by using an algorithm, was inversely correlated with the deviance of the population growth rate from equilibrium as well as with among-year population fluctuations. Temporal variability was greater for short-lived species than for the long-lived ones because fecundity was more variable than survival and relatively more important for population dynamics for the short-lived species. The relationship between life span and population stability suggests that selection for longevity may have played an important role in the life history evolution of plants because of its ability to buffer temporal fluctuations in population size.  相似文献   

20.
I provide an analysis of a simplified life history model for green sturgeon, Acipenser medirostris, based on published and recent estimates of reproduction and growth rates and survival rates from life history theory. The deterministic life cycle models serve as a tool for qualitative analysis of the impacts of perturbations on green sturgeon, including harvest regulations based on minimum and maximum size limits (“slot limits”). Elasticity analysis of models with two alternative age–length relationships give similar results, with a high sensitivity of population growth rate to changes in the survival rate of subadult and adult fish. A dramatic increase in the survival of young of the year sturgeon or annual egg production is required to compensate for relatively low levels of fishing mortality. Peak reproductive values occur from ages 25 to 40. An increase or decrease in the maximum and minimum size limits can have a profound effect on the elasticity of population growth to changes in the annual survival rate of age classes specified by the slot, due to changes in the number of age classes of subadults and adults that are available for harvest. This analysis provides managers with a simple tool to assess the relative impacts of alternative harvest regulations. In general, green sturgeon follow life history patterns similar to other sturgeon, but species-specific demographic information is needed to produce more complex assessment and viability analysis models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号