首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weick M  Demb JB 《Neuron》2011,71(1):166-179
Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization.  相似文献   

2.
Fast and slow contrast adaptation in retinal circuitry   总被引:8,自引:0,他引:8  
Baccus SA  Meister M 《Neuron》2002,36(5):909-919
The visual system adapts to the magnitude of intensity fluctuations, and this process begins in the retina. Following the switch from a low-contrast environment to one of high contrast, ganglion cell sensitivity declines in two distinct phases: a fast change occurs in <0.1 s, and a slow decrease over approximately 10 s. To examine where these modulations arise, we recorded intracellularly from every major cell type in the salamander retina. Certain bipolar and amacrine cells, and all ganglion cells, adapted to contrast. Generally, these neurons showed both fast and slow adaptation. Fast effects of a contrast increase included accelerated kinetics, decreased sensitivity, and a depolarization of the baseline membrane potential. Slow adaptation did not affect kinetics, but produced a gradual hyperpolarization. This hyperpolarization can account for slow adaptation in the spiking output of ganglion cells.  相似文献   

3.
HP Wei  YY Yao  RW Zhang  XF Zhao  JL Du 《Neuron》2012,75(3):479-489
Neural activity-induced long-term potentiation (LTP) of synaptic transmission is believed to be one of the cellular mechanisms underlying experience-dependent developmental refinement of neural circuits. Although it is well established that visual experience and neural activity are critical for the refinement of retinal circuits, whether and how LTP occurs in the retina remain unknown. Using in?vivo perforated whole-cell recording and two-photon calcium imaging, we find that both repeated electrical and visual stimulations can induce LTP at excitatory synapses formed by bipolar cells on retinal ganglion cells in larval but not juvenile zebrafish. LTP induction requires the activation of postsynaptic N-methyl-D-aspartate receptors, and its expression involves arachidonic acid-dependent presynaptic changes in calcium dynamics and neurotransmitter release. Physiologically, both electrical and visual stimulation-induced LTP can enhance visual responses of retinal ganglion cells. Thus, LTP exists in developing retinae with a presynaptic locus and may serve for visual experience-dependent refinement of retinal circuits.  相似文献   

4.
Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP) which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sIAHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC) and extracellular regulated kinase (ERK) activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.  相似文献   

5.
Photopic action of thyrotropin-releasing hormone in the cat retina   总被引:1,自引:0,他引:1  
The effects of iontophoretically applied thyrotropin-releasing hormone (TRH) on cat retinal brisk-sustained(X) and brisk-transient(Y) ganglion cells were studied in the intact eye in vivo. Under photopic illumination we found a differential action of TRH on ON- and OFF-centre cells: the maintained activity and light response were suppressed in ON-centre cells and enhanced in OFF-centre cells. This was true for both brisk-sustained(X) and brisk-transient(Y) cells. In contrast, TRH did not influence the ganglion cell discharge under scotopic stimulus conditions. These results indicate that TRH acts on neurons presynaptic to ganglion cells and these neurons are only active under photopic conditions. We suggest that a possible functional role of this specific action of TRH is in light adaptation.  相似文献   

6.
Weber and noise adaptation in the retina of the toad Bufo marinus   总被引:2,自引:1,他引:1       下载免费PDF全文
Responses to flashes and steps of light were recorded intracellularly from rods and horizontal cells, and extracellularly from ganglion cells, in toad eyecups which were either dark adapted or exposed to various levels of background light. The average background intensities needed to depress the dark-adapted flash sensitivity by half in the three cell types, determined under identical conditions, were 0.9 Rh*s-1 (rods), 0.8 Rh*s-1 (horizontal cells), and 0.17 Rh*s-1 (ganglion cells), where Rh* denotes one isomerization per rod. Thus, there is a range (approximately 0.7 log units) of weak backgrounds where the sensitivity (response amplitude/Rh*) of rods is not significantly affected, but where that of ganglion cells (1/threshold) is substantially reduced, which implies that the gain of the transmission from rods to the ganglion cell output is decreased. In this range, the ganglion cell threshold rises approximately as the square root of background intensity (i.e. in proportion to the quantal noise from the background), while the maintained rate of discharge stays constant. The threshold response of the cell will then signal light deviations (from a mean level) of constant statistical significance. We propose that this type of ganglion cell desensitization under dim backgrounds is due to a post-receptoral gain control driven by quantal fluctuations, and term it noise adaptation in contrast to the Weber adaptation (desensitization proportional to the mean background intensity) of rods, horizontal cells, and ganglion cells at higher background intensities.  相似文献   

7.
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2/ mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2/ were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2/ mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light.  相似文献   

8.
The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main types of ganglion cell: "on" center, "off" center, "on-off", and a "hybrid" cell that responds transiently to center, but sustainedly, to surround illumination. The results lead to these inferences. The on-ganglion cell receives excitatory synpatic input from the on bipolars and that synapse is "silent" in the dark. The off-ganglion cell receives excitatory synaptic input from the off bipolars with this synapse tonically active in the dark. The on-off and hybrid ganglion cells receive a transient excitatory input with narrow receptive field, not simply correlated with the activity of any presynaptic cell. All cell types receive a broad field transient inhibitory input, which apparently originates in the transient amacrine cells. Thus, most, but not all, ganglion cell responses can be explained in terms of synaptic inputs from bipolar and amacrine cells, integrated at the ganglion cell membrane.  相似文献   

9.
Summary A polyclonal antiserum to protein kinase C has been used to study the distribution of the enzyme antigenic sites in rat retina. The results indicate that the kinase is concentrated in photoreceptor outer segments as well as in the outer and inner plexiform layers. In identified components of retinal neuronal circuits, the kinase immunoreactivity is present in photoreceptor presynaptic terminals, in bipolar cell dendrites and axons, and probably in bipolar cell presynaptic terminals impinging on retinal ganglion cell dendrites. Thus, protein kinase C is positioned to play a role in specialized compartments of photoreceptor membrane and at both pre- and postsynaptic levels in the function of retinal neuronal circuits. Label in the nucleus is observed in retinal ganglion cells, but not bipolar or horizontal cells and probably not in amacrine cells. A role for protein kinase C in neuronal function at the level of the cell nucleus is therefore not likely to be universal, but to be determined by the particular properties of individual neuronal types.  相似文献   

10.
Summary Tyrosine hydroxylase (TH) immunocytochemistry was utilized to quantify dopaminergic synapses in the inner plexiform layer of the retina of Bufo marinus. Since dopaminergic cells have bistratified dendritic arborisation in the inner plexiform layer, attention was given to the segregation of synapses between the scleral and the vitreal sublaminae. Light-microscopically, a more elaborate dendritic branching was observed in the scleral than in the vitreal sublamina. In contrast, about 55% of synapses occurred in the vitreal one fifth of the inner plexiform layer, 30% in the scleral fifth, and 15% in the intermediate laminae. Input sources and output targets showed only minor quantitative differences between sublaminae 1 and 5. TH-immunoreactive processes were found in presynaptic (62.8%) and postsynaptic (37.2%) positions. Synapses to the stained dendrites derived from bipolar (40.4%) and amacrine (59.6%) cells, whereas outputs from the TH-positive processes were directed to amacrine cells (56.8%) and to small and medium-sized dendrites (35.4%); at least some of these can be considered as ganglion cell dendrites. TH-positive profiles neither formed synapses with each other nor were presynaptic to bipolar cell terminals. Junctional appositions of the immunoreactive profiles were occasionally seen on non-stained amacrine and ganglion cell dendrites in the scleral sublamina of the inner plexiform layer and on optic axons in the optic fibre layer. Although dopaminergic cells are mainly involved in amacrine-amacrine interactions, inputs from bipolar terminals and outputs to ganglion cell dendrites were also substantial, suggestive of a role also in vertical information processing.  相似文献   

11.
Sensory information is thought to be modulated by presynaptic inhibition. Although this form of inhibition is a well-studied phenomenon, it is still unclear what role it plays in shaping sensory signals in intact circuits. By visually stimulating the retinas of transgenic mice lacking GABAc receptor-mediated presynaptic inhibition, we found that this inhibition regulated the dynamic range of ganglion cell (GC) output to the brain. Presynaptic inhibition acted differentially upon two major retinal pathways; its elimination affected GC responses to increments, but not decrements, in light intensity across the visual scene. The GC dynamic response ranges were different because presynaptic inhibition limited glutamate release from ON, but not OFF, bipolar cells, which modulate the extent of glutamate spillover and activation of perisynaptic NMDA receptors at ON GCs. Our results establish a role for presynaptic inhibitory control of spillover in determining sensory output in the CNS.  相似文献   

12.
Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.  相似文献   

13.
Freed MA  Smith RG  Sterling P 《Neuron》2003,38(1):89-101
In isolation, a presynaptic terminal generally releases quanta according to Poisson statistics, but in a circuit its release statistics might be shaped by synaptic interactions. We monitored quantal glutamate release from retinal bipolar cell terminals (which receive GABA-ergic feedback from amacrine cells) by recording spontaneous EPSCs (sEPSCs) in their postsynaptic amacrine and ganglion cells. In about one-third of these cells, sEPSCs were temporally correlated, arriving in brief bursts (10-55 ms) more often than expected from a Poisson process. Correlations were suppressed by antagonizing the GABA(C) receptor (expressed on bipolar terminals), and correlations were induced by raising extracellular calcium or osmolarity. Simulations of the feedback circuit produced "bursty" release when the bipolar cell escaped intermittently from inhibition. Correlations of similar duration were present in the light-evoked sEPSCs and spike trains of sluggish-type ganglion cells. These correlations were suppressed by antagonizing GABA(C) receptors, indicating that glutamate bursts from bipolar terminals induce spike bursts in ganglion cells.  相似文献   

14.
Solomon SG  Peirce JW  Dhruv NT  Lennie P 《Neuron》2004,42(1):155-162
Prior exposure to a moving grating of high contrast led to a substantial and persistent reduction in the contrast sensitivity of neurons in the lateral geniculate nucleus (LGN) of macaque. This slow contrast adaptation was potent in all magnocellular (M) cells but essentially absent in parvocellular (P) cells and neurons that received input from S cones. Simultaneous recordings of M cells and the potentials of ganglion cells driving them showed that adaptation originated in ganglion cells. As expected from the spatiotemporal tuning of M cells, adaptation was broadly tuned for spatial frequency and lacked orientation selectivity. Adaptation could be induced by high temporal frequencies to which cortical neurons do not respond, but not by low temporal frequencies that can strongly adapt cortical neurons. Our observations confirm that contrast adaptation occurs at multiple levels in the visual system, and they provide a new way to reveal the function and perceptual significance of the M pathway.  相似文献   

15.
Li H  Liu WZ  Liang PJ 《PloS one》2012,7(3):e34336
Nearby retinal ganglion cells of similar functional subtype have a tendency to discharge spikes in synchrony. The synchronized activity is involved in encoding some aspects of visual input. On the other hand, neurons always continuously adjust their activities in adaptation to some features of visual stimulation, including mean ambient light, contrast level, etc. Previous studies on adaptation were primarily focused on single neuronal activity, however, it is also intriguing to investigate the adaptation process in population neuronal activities. In the present study, by using multi-electrode recording system, we simultaneously recorded spike discharges from a group of dimming detectors (OFF-sustained type ganglion cells) in bullfrog retina. The changes in receptive field properties and synchronization strength during contrast adaptation were analyzed. It was found that, when perfused using normal Ringer's solution, single neuronal receptive field size was reduced during contrast adaptation, which was accompanied by weakening in synchronization strength between adjacent neurons' activities. When dopamine (1 μM) was applied, the adaptation-related receptive field area shrinkage and synchronization weakening were both eliminated. The activation of D1 receptor was involved in the adaptation-related modulation of synchronization and receptive field. Our results thus suggest that the size of single neuron's receptive field is positively related to the strength of its synchronized activity with its neighboring neurons, and the dopaminergic pathway is responsible for the modulation of receptive field property and synchronous activity of the ganglion cells during the adaptation process.  相似文献   

16.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are depolarized by light by two mechanisms: directly, through activation of their photopigment melanopsin; and indirectly through synaptic circuits driven by rods and cones. To learn more about the rod and cone circuits driving ipRGCs, we made multielectrode array (MEA) and patch-clamp recordings in wildtype and genetically modified mice. Rod-driven ON inputs to ipRGCs proved to be as sensitive as any reaching the conventional ganglion cells. These signals presumably pass in part through the primary rod pathway, involving rod bipolar cells and AII amacrine cells coupled to ON cone bipolar cells through gap junctions. Consistent with this interpretation, the sensitive rod ON input to ipRGCs was eliminated by pharmacological or genetic disruption of gap junctions, as previously reported for conventional ganglion cells. A presumptive cone input was also detectable as a brisk, synaptically mediated ON response that persisted after disruption of rod ON pathways. This was roughly three log units less sensitive than the rod input. Spectral analysis revealed that both types of cones, the M- and S-cones, contribute to this response and that both cone types drive ON responses. This contrasts with the blue-OFF, yellow-ON chromatic opponency reported in primate ipRGCs. The cone-mediated response was surprisingly persistent during steady illumination, echoing the tonic nature of both the rod input to ipRGCs and their intrinsic, melanopsin-based phototransduction. These synaptic inputs greatly expand the dynamic range and spectral bandpass of the non-image-forming visual functions for which ipRGCs provide the principal retinal input.  相似文献   

17.
18.
Afferent innervation patterns in the vestibular periphery are complex, and vestibular afferents show a large variation in their regularity of firing. Calyx fibers terminate on type I vestibular hair cells and have firing characteristics distinct from the bouton fibers that innervate type II hair cells. Whole-cell patch clamp was used to investigate ionic currents that could influence firing patterns in calyx terminals. Underlying K(Ca) conductances have been described in vestibular ganglion cells, but their presence in afferent terminals has not been investigated previously. Apamin, a selective blocker of SK-type calcium-activated K(+) channels, was tested on calyx afferent terminals isolated from gerbil semicircular canals during postnatal days 1-50. Lowering extracellular calcium or application of apamin (20-500?nM) reduced slowly activating outward currents in voltage clamp. Apamin also reduced the action potential afterhyperpolarization (AHP) in whole-cell current clamp, but only after the first two postnatal weeks. K(+) channel expression increased during the first postnatal month, and SK channels were found to contribute to the AHP, which may in turn influence discharge regularity in calyx vestibular afferents.  相似文献   

19.
A model of anuran retina relating interneurons to ganglion cell responses   总被引:1,自引:0,他引:1  
A model is presented which accounts for many characteristic response properties used to classify anuran ganglion cell types while being consistent with data concerning interneurons. In the model color is ignored and input stimuli are assumed to be only black and white at high contrast. We show that accurate ganglion cell responses are obtained even with simplified receptors and horizontal cells: Receptors are modeled as responding with a step change, while horizontal cells respond only to global changes in intensity brought about by full field illumination changes. A hyperpolarizing and depolarizing bipolar cell are generated y subtracting local receptor and horizontal potentials. Two transient amacrine cells (On and Off) are generated using a high-pass filter like mechanism with a thresholded output which responds to positive going changes in the corresponding bipolar cell potentials. The model shows how a selective combination of bipolar and amacrine channels can account for many of the response properties used to classify the anuran ganglion cell types (class-0 through 4) and makes several experimental predictions.  相似文献   

20.
The morphology of the cardiac ganglion of Limulus polyphemus (L) was examined by reconstructions from stained serial sections. This ganglion is composed of two distinct parts: a fiber tract extending the entire length of the heart and a cellular portion underlying the fiber tract. The cellular portion extends continuously from the third pair of ostia to the posterior terminus of the heart. The mean number of ganglion cell bodies is 231. Most of the ganglion cells are located among the glial elements of the cellular portion. The greatest density of cells is found in segments 5 and 6. Six cell types are recognized: (1) large pigmented unipolar cells approximately 120 μ in diameter with distinct connective tissue capsules around them; (2) large pigmented bipolar cells approximately 120 μ in length which are also encapsulated; (3) pigmented multipolar cells approximately 80 μ in diameter which are free of capsules; (4) small pigmented bipolar cells approximately 40 μ in length which are encapsulated but which are found exclusively within the fiber tract; (5) non-pigmented multipolar cells approximately 30 μ in diameter which are found scattered among the connective tissue elements of the cellular portion; and (6) small non-pigmented cells approximately 10 μ in diameter which are found within the unipolar cell capsule and scattered among the connective tissue elements of the ganglion. The variability in cell numbers and the random location of cells points toward non-specific anatomical connectivity between elements of this ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号