首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal host–microbe interactions are a relevant concern for wildlife conservation, particularly regarding generalist pathogens, where domestic host species can play a role in the transmission of infectious agents, such as viruses, to wild animals. Knowledge on viral circulation in wild host species is still scarce and can be improved by the recent advent of modern molecular approaches. We aimed to characterize the fecal virome and identify viruses of potential conservation relevance of diarrheic free‐ranging wolves and sympatric domestic dogs from Central Portugal, where a small and threatened wolf population persists in a highly anthropogenically modified landscape. Using viral metagenomics, we screened diarrheic stools collected from wolves (n = 8), feral dogs (n = 4), and pet dogs (n = 6), all collected within wolf range. We detected novel highly divergent viruses as well as known viral pathogens with established effects on population dynamics, including canine distemper virus, a novel bocavirus, and canine minute virus. Furthermore, we performed a 4‐year survey for the six wolf packs comprising this endangered wolf population, screening 93 fecal samples from 36 genetically identified wolves for canine distemper virus and the novel bocavirus, previously identified using our metagenomics approach. Our novel approach using metagenomics for viral screening in noninvasive samples of wolves and dogs has profound implications on the knowledge of both virology and wildlife diseases, establishing a complementary tool to traditional screening methods for the conservation of threatened species.  相似文献   

2.
Typically, pathogens infect multiple host species. Such multihost pathogens can show considerable variation in their degree of infection and transmission specificity, which has important implications for potential disease emergence. Transmission of multihost pathogens can be driven by key host species and changes in such transmission networks can lead to disease emergence. We study two viruses that show contrasting patterns of prevalence and specificity in managed honeybees and wild bumblebees, black queen cell virus (BQCV) and slow bee paralysis virus (SBPV), in the context of the novel transmission route provided by the virus‐vectoring Varroa destructor. Our key result is that viral communities and RNA virus genetic variation are structured by location, not host species or V. destructor presence. Interspecific transmission is pervasive with the same viral variants circulating between pollinator hosts in each location; yet, we found virus‐specific host differences in prevalence and viral load. Importantly, V. destructor presence increases the prevalence in honeybees and, indirectly, in wild bumblebees, but in contrast to its impact on deformed wing virus (DWV), BQCV and SBPV viral loads are not increased by Varroa presence, and do not show genetic evidence of recent emergence. Effective control of Varroa in managed honeybee colonies is necessary to mitigate further disease emergence, and alleviate disease pressure on our vital wild bee populations. More generally, our results highlight the over‐riding importance of geographical location to the epidemiological outcome despite the complexity of multihost‐parasite interactions.  相似文献   

3.
1. Colonization success of species when confronted with novel environments is of interest in ecological, evolutionary and conservation contexts. Such events may represent the first step for ecological diversification. They also play an important role in adaptive divergence and speciation. 2. A species that is able to do well across a range of environments has a higher plasticity than one whose success is restricted to a single or few environments. The breadth of environments in which a species can succeed is ultimately determined by the full pattern of its vital rates in each environment. 3. Examples of organisms colonizing novel environments are insect herbivores expanding their diets to novel host plants. One expectation for insect herbivores is that species with specialized diets may display less plasticity when faced with novel hosts than generalist species. 4. We examine this hypothesis for two generalist and two specialist neotropical beetles (genus Cephaloleia: Chrysomelidae) currently expanding their diets from native to novel plants of the order Zingiberales. Using an experimental approach, we estimated changes in vital rates, life-history traits and lifetime fitness for each beetle species when feeding on native or novel host plants. 5. We did not find evidence supporting more plasticity for generalists than for specialists. Instead, we found similar patterns of survival and fecundity for all herbivores. Larvae survived worse on novel hosts; adults survived at least as well or better, but reproduced less on the novel host than on natives. 6. Some of the novel host plants represent challenging environments where population growth was negative. However, in four novel plant-herbivore interactions, instantaneous population growth rates were positive. 7. Positive instantaneous population growth rates during initial colonization of novel host plants suggest that both generalist and specialist Cephaloleia beetles may be pre-adapted to feed on some novel hosts. This plasticity in host use is a key factor for successful colonization of novel hosts. Future success or failure in the colonization of these novel hosts will depend on the demographic rates described in this research, natural selection and the evolutionary responses of life-history traits in novel environments.  相似文献   

4.
Pathogen evolution and disease emergence in carnivores   总被引:4,自引:0,他引:4  
Emerging infectious diseases constitute some of the most pressing problems for both human and domestic animal health, and biodiversity conservation. Currently it is not clear whether the removal of past constraints on geographical distribution and transmission possibilities for pathogens alone are sufficient to give rise to novel host-pathogen combinations, or whether pathogen evolution is also generally required for establishment in novel hosts. Canine distemper virus (CDV) is a morbillivirus that is prevalent in the world dog population and poses an important conservation threat to a diverse range of carnivores. We performed an extensive phylogenetic and molecular evolution analysis on complete sequences of all CDV genes to assess the role of selection and recombination in shaping viral genetic diversity and driving the emergence of CDV in non-dog hosts. We tested the specific hypothesis that molecular adaptation at known receptor-binding sites of the haemagglutinin gene is associated with independent instances of the spread of CDV to novel non-dog hosts in the wild. This hypothesis was upheld, providing compelling evidence that repeated evolution at known functional sites (in this case residues 530 and 549 of the haemagglutinin molecule) is associated with multiple independent occurrences of disease emergence in a range of novel host species.  相似文献   

5.
Bats are natural reservoirs of several important emerging viruses. Cross‐species transmission appears to be quite common among bats, which may contribute to their unique reservoir potential. Therefore, understanding the importance of bats as reservoirs requires examining them in a community context rather than concentrating on individual species. Here, we use a network approach to identify ecological and biological correlates of cross‐species virus transmission in bats and rodents, another important host group. We show that given our current knowledge the bat viral sharing network is more connected than the rodent network, suggesting viruses may pass more easily between bat species. We identify host traits associated with important reservoir species: gregarious bats are more likely to share more viruses and bats which migrate regionally are important for spreading viruses through the network. We identify multiple communities of viral sharing within bats and rodents and highlight potential species traits that can help guide studies of novel pathogen emergence.  相似文献   

6.
Rates of evolution span orders of magnitude among RNA viruses with important implications for viral transmission and emergence. Although the tempo of viral evolution is often ascribed to viral features such as mutation rates and transmission mode, these factors alone cannot explain variation among closely related viruses, where host biology might operate more strongly on viral evolution. Here, we analyzed sequence data from hundreds of rabies viruses collected from bats throughout the Americas to describe dramatic variation in the speed of rabies virus evolution when circulating in ecologically distinct reservoir species. Integration of ecological and genetic data through a comparative Bayesian analysis revealed that viral evolutionary rates were labile following historical jumps between bat species and nearly four times faster in tropical and subtropical bats compared to temperate species. The association between geography and viral evolution could not be explained by host metabolism, phylogeny or variable selection pressures, and instead appeared to be a consequence of reduced seasonality in bat activity and virus transmission associated with climate. Our results demonstrate a key role for host ecology in shaping the tempo of evolution in multi-host viruses and highlight the power of comparative phylogenetic methods to identify the host and environmental features that influence transmission dynamics.  相似文献   

7.
Pulliam JR 《EcoHealth》2008,5(1):80-91
In order to predict pathogen emergence, we must distinguish between emergence phenomena that occur via different processes. Focusing on the appearance of viral pathogens in new host species, I outline a framework that uses specific molecular characteristics to rank virus families by their expected a priori ability to complete each of three steps in the emergence process (encounter, infection, and propagation). I then discuss the degree to which the patterns expected, based solely on molecular-level structural characteristics, agree with observations regarding the ability of animal viruses to infect humans. This approach yields predictions consistent with empirical observations regarding the ability of specific viral families to infect novel host species but highlights the need for consideration of other factors, such as the ecology of host interactions and the determinants of cellular susceptibility and permissivity to specific virus groups, when trying to predict the frequency with which a virus will encounter a novel host species or the probability of propagation within a novel host species once infection has occurred.  相似文献   

8.
Populations are at risk of extinction when unsuitable or when sink habitat exceeds a threshold frequency in the environment. Sinks that present cues associated with high-quality habitats, termed ecological traps, have especially detrimental effects on net population growth at metapopulation scales. Ecological traps for viruses arise naturally, or can be engineered, via the expression of viral-binding sites on cells that preclude viral reproduction. We present a model for virus population growth in a heterogeneous host community, parameterized with data from populations of the RNA bacteriophage Φ6 presented with mixtures of suitable host bacteria and either neutral or trap cells. We demonstrate that viruses can sustain high rates of population growth in the presence of neutral non-hosts as long as some host cells are present, whereas trap cells dramatically reduce viral fitness. In addition, we demonstrate that the efficacy of traps for viral elimination is frequency dependent in spatially structured environments such that population viability is a nonlinear function of habitat loss in dispersal-limited virus populations. We conclude that the ecological concepts applied to species conservation in altered landscapes can also contribute to the development of trap cell therapies for infectious human viruses.  相似文献   

9.
Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.  相似文献   

10.
Viral emergence can result from the adaptation of endemic pathogens to new or altered host environments, a process that is strongly influenced by the underlying sequence diversity. To determine the extent and structure of intrahost genetic diversity in a recently emerged single-stranded DNA virus, we analyzed viral population structures during natural infections of animals with canine parvovirus (CPV) or its ancestor, feline panleukopenia virus (FPV). We compared infections that occurred shortly after CPV emerged with more recent infections and examined the population structure of CPV after experimental cross-species transmission to cats. Infections with CPV and FPV showed limited genetic diversity regardless of the analyzed host tissue or year of isolation. Coinfections with genetically distinct viral strains were detected in some cases, and rearranged genomes were seen in both FPV and CPV. The sporadic presence of some sequences with multiple mutations suggested the occurrence of either particularly error-prone viral replication or coinfection by more distantly related strains. Finally, some potentially organ-specific host effects were seen during experimental cross-species transmission, with many of the mutations located in the nonstructural protein NS2. These included residues with evidence of positive selection at the population level, which is compatible with a role of this protein in host adaptation.  相似文献   

11.
Understanding how evolution promotes pathogen emergence would aid disease management, and prediction of future host shifts. Increased pathogen infectiousness of different hosts may occur through direct selection, or fortuitously via indirect selection. However, it is unclear which type of selection tends to produce host breadth promoting pathogen emergence. We predicted that direct selection for host breadth should foster emergence by causing higher population growth on new hosts, lower among‐population variance in growth on new hosts, and lower population variance in growth across new hosts. We tested the predictions using experimentally evolved vesicular stomatitis virus populations, containing groups of host‐use specialists, directly selected generalists, and indirectly selected generalists. In novel‐host challenges, viruses directly selected for generalism showed relatively higher or equivalent host growth, lower among‐population variance in host growth, and lower population variance in growth across hosts. Thus, two of three outcomes supported our prediction that directly selected host breadth should favor host colonization. Also, we observed that indirectly selected generalists were advantaged over specialist viruses, indicating that fortuitous changes in host breadth may also promote emergence. We discuss evolution of phenotypic plasticity versus environmental robustness in viruses, virus avoidance of extinction, and surveillance of pathogen niche breadth to predict future likelihood of emergence.  相似文献   

12.
Despite environmental, social and ecological dependencies, emergence of zoonotic viruses in human populations is clearly also affected by genetic factors which determine cross-species transmission potential. RNA viruses pose an interesting case study given their mutation rates are orders of magnitude higher than any other pathogen – as reflected by the recent emergence of SARS and Influenza for example. Here, we show how feature selection techniques can be used to reliably classify viral sequences by host species, and to identify the crucial minority of host-specific sites in pathogen genomic data. The variability in alleles at those sites can be translated into prediction probabilities that a particular pathogen isolate is adapted to a given host. We illustrate the power of these methods by: 1) identifying the sites explaining SARS coronavirus differences between human, bat and palm civet samples; 2) showing how cross species jumps of rabies virus among bat populations can be readily identified; and 3) de novo identification of likely functional influenza host discriminant markers.  相似文献   

13.
Although the ecology of many exotic invaders has been intensively examined in the novel range, few studies have comparatively explored how population dynamics differ in native and novel parts of an invading plants’ range. The population dynamics of mile-a-minute weed, Polygonum perfoliatum L., was explored in both the native (Japan) and novel (northeastern USA) portions of its range and evaluated using periodic matrix models. Projected per capita population growth rate (λ) varied within and between native and novel range populations. Surprisingly, five of the six populations in the novel range were projected to fail to replace themselves (λ<1) while only two of the four native range populations were projected to decline, although these projections had wider confidence intervals than in the novel habitat. While changes in germination, survivorship, fecundity and seed banking would have equivalent effects on population growth in the invasive habitat, small increases in plant survivorship would greatly increase λ in native populations. The differences between native and novel population growth rates were driven by lower adult survival in the native range caused by annual flooding and higher fecundity. Simulation analyses indicated that a 50% reduction in plant survival would be required to control growing populations in the novel range. Further comparative studies of other invading species in both their native and novel ranges are needed to examine whether the high per capita population growth and strong regulatory effects of adult survival in the native habitat are generally predictive of invasive behavior in novel habitats. Sachiko Araki: (Deceased)  相似文献   

14.
New interactions with non-native species can alter selection pressures on native species. Here, we examined the effect of the spatial distribution of a non-native species, a factor that determines ecological and evolutionary outcomes but that is poorly understood, particularly on a fine scale. Specifically, we explored a native butterfly population and a non-native plant on which the butterfly oviposits despite the plant’s toxicity to larvae. We developed an individual-based model to describe movement and oviposition behaviors of each butterfly, which were determined by plant distribution and the butterfly''s host preference genotype. We estimated the parameter values of the model from rich field data. We simulated various patterns of plant distributions and compared the rates of butterfly population growth and changes in the allele frequency of oviposition preference. Neither the number nor mean area of patches of non-native species affected the butterfly population, whereas plant abundance, patch shape, and distance to the nearest native and non-native patches altered both the population dynamics and genetics. Furthermore, we found a dramatic decrease in population growth rates when we reduced the distance to the nearest native patch from 147 m to 136 m. Thus changes in the non-native resource distribution that are critical to the fate of the native herbivore could only be detected at a fine-grained scale that matched the scale of a female butterfly’s movement. In addition, we found that the native butterfly population was unlikely to be rescued by the exclusion of the allele for acceptance of the non-native plant as a host. This study thus highlights the importance of including both ecological and evolutionary dynamics in analyses of the outcome of species interactions and provides insights into habitat management for non-native species.  相似文献   

15.
It has been widely argued that the acquisition of novel disease resistance genes by wild host populations following the release of novel pathogen‐resistant plants into agricultural systems could pose a significant threat to non‐target plant communities. However, predicting the magnitude of ecological release in wild plant populations following the removal of disease remains a major challenge. In this paper we report on the second phase of a tiered risk assessment designed to investigate the role of disease on host growth, survival, fecundity and fitness in a model pathosystem (the pasture species Trifolium repens infected with Clover yellow vein virus, ClYVV) and to assess the level of risk posed to at‐risk native plant communities in southeast Australia by newly developed genetically modified and conventionally bred virus‐resistant T. repens genotypes. Multi‐year field experiments conducted in woodland and grassland environments using host‐pathogen arrays derived from 14 ClYVV isolates and 21 T. repens genotypes indicate that viral infection reduces fecundity, growth and survival of wild T. repens plants but that the severity of these effects depends on host tolerance to infection, isolate aggressiveness and specific spatial and temporal environmental conditions. Demographic modelling showed that by reducing host survival and growth, ClYVV also limits the intrinsic population growth rate and niche size of wild T. repens populations. Given the significant fitness cost associated with viral infection we conclude that virus‐resistant T. repens genotypes may pose a threat to some high conservation‐value non‐target ecosystems in SE Australia. We also argue that long‐term, multi‐tiered experiments conducted in a range of controlled and non‐controlled environments are necessary to detect and accurately quantify risks associated with the release of disease‐resistant plants in general.  相似文献   

16.
A major challenge in disease ecology is to understand the role of individual variation of infection load on disease transmission dynamics and how this influences the evolution of resistance or tolerance mechanisms. Such information will improve our capacity to understand, predict, and mitigate pathogen-associated disease in all organisms. In many host-pathogen systems, particularly macroparasites and sexually transmitted diseases, it has been found that approximately 20% of the population is responsible for approximately 80% of the transmission events. Although host contact rates can account for some of this pattern, pathogen transmission dynamics also depend upon host infectiousness, an area that has received relatively little attention. Therefore, we conducted a meta-analysis of pathogen shedding rates of 24 host (avian) – pathogen (RNA-virus) studies, including 17 bird species and five important zoonotic viruses. We determined that viral count data followed the Weibull distribution, the mean Gini coefficient (an index of inequality) was 0.687 (0.036 SEM), and that 22.0% (0.90 SEM) of the birds shed 80% of the virus across all studies, suggesting an adherence of viral shedding counts to the Pareto Principle. The relative position of a bird in a distribution of viral counts was affected by factors extrinsic to the host, such as exposure to corticosterone and to a lesser extent reduced food availability, but not to intrinsic host factors including age, sex, and migratory status. These data provide a quantitative view of heterogeneous virus shedding in birds that may be used to better parameterize epidemiological models and understand transmission dynamics.  相似文献   

17.
Summary: Host range is a viral property reflecting natural hosts that are infected either as part of a principal transmission cycle or, less commonly, as “spillover” infections into alternative hosts. Rarely, viruses gain the ability to spread efficiently within a new host that was not previously exposed or susceptible. These transfers involve either increased exposure or the acquisition of variations that allow them to overcome barriers to infection of the new hosts. In these cases, devastating outbreaks can result. Steps involved in transfers of viruses to new hosts include contact between the virus and the host, infection of an initial individual leading to amplification and an outbreak, and the generation within the original or new host of viral variants that have the ability to spread efficiently between individuals in populations of the new host. Here we review what is known about host switching leading to viral emergence from known examples, considering the evolutionary mechanisms, virus-host interactions, host range barriers to infection, and processes that allow efficient host-to-host transmission in the new host population.  相似文献   

18.
Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species. We test the hypothesis that host geographic range area, distribution, population genetic structure, migratory behavior, International Union for Conservation of Nature and Natural Resources (IUCN) threat status, body mass, and colony size, are associated with known viral richness in bats. We analyze host traits and viral richness in a generalized linear regression model framework, and include a correction for sampling effort and phylogeny. We find evidence that sampling effort, IUCN status, and population genetic structure correlate with observed viral species richness in bats, and that these associations are independent of phylogeny. This study is an important first step in understanding the mechanisms that promote viral richness in reservoir species, and may aid in predicting the emergence of viral zoonoses from bats.  相似文献   

19.
Longdon B  Wilfert L  Obbard DJ  Jiggins FM 《Genetics》2011,188(1):141-150
Insects are host to a diverse range of vertically transmitted micro-organisms, but while their bacterial symbionts are well-studied, little is known about their vertically transmitted viruses. We have found that two sigma viruses (Rhabdoviridae) recently discovered in Drosophila affinis and Drosophila obscura are both vertically transmitted. As is the case for the sigma virus of Drosophila melanogaster, we find that both males and females can transmit these viruses to their offspring. Males transmit lower viral titers through sperm than females transmit through eggs, and a lower proportion of their offspring become infected. In natural populations of D. obscura in the United Kingdom, we found that 39% of flies were infected and that the viral population shows clear evidence of a recent expansion, with extremely low genetic diversity and a large excess of rare polymorphisms. Using sequence data we estimate that the virus has swept across the United Kingdom within the past ~11 years, during which time the viral population size doubled approximately every 9 months. Using simulations based on our lab estimates of transmission rates, we show that the biparental mode of transmission allows the virus to invade and rapidly spread through populations at rates consistent with those measured in the field. Therefore, as predicted by our simulations, the virus has undergone an extremely rapid and recent increase in population size. In light of this and earlier studies of a related virus in D. melanogaster, we conclude that vertically transmitted rhabdoviruses may be common in insects and that these host-parasite interactions can be highly dynamic.  相似文献   

20.
Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference–performance studies to integrate vital rates across all life stages for evaluating herbivore–host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号