共查询到20条相似文献,搜索用时 0 毫秒
1.
Cotton plant architecture is an important characteristic influencing the suitability of specific cotton varieties in cultivation, fiber yield and quality. However, complex multigenic relationships and substantial genotype–environment interaction underlie plant architecture, and will hinder the efficient improvement of these traits in conventional cotton breeding programs. An enhanced understanding of the molecular-genetic regulation of plant morphological developmental can aid in the modification of agronomically relevant traits. In this study, an interspecific Gossypium hirsutum and Gossypium barbadense BC1 population was used to identify QTL associated with plant architectural traits. Twenty-six single QTL were identified for seven plant architecture traits. The phenotypic variation explained by an individual QTL ranged from 9.56% to 44.57%. In addition, 11 epistatic QTL for fruit branch angle (FBA), plant height (PH), main-stem leaf size (MLS), and fruiting branch internode length (FBI) explained 2.28–15.34% of the phenotypic variation in these traits. The majority of the interactions (60%) occurred between markers linked to QTL influencing the same traits. The QTL detected in this study are expected to be valuable in future breeding programs to develop cultivars exhibiting desirable cotton architecture. 相似文献
2.
ERIC J. BAACK§ YUVAL SAPIR†§ MARK A. CHAPMAN‡ JOHN M. BURKE‡ LOREN H. RIESEBERG§ 《Molecular ecology》2008,17(2):666-677
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop–wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop–wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11–12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions. 相似文献
3.
Nina F Schulman Goutam Sahana Mogens S Lund Sirja M Viitala Johanna H Vilkki 《遗传、选种与进化》2008,40(2):195-214
A whole genome scan was carried out to detect quantitative trait loci (QTL) for fertility traits in Finnish Ayrshire cattle. The mapping population consisted of 12 bulls and 493 sons. Estimated breeding values for days open, fertility treatments, maternal calf mortality and paternal non-return rate were used as phenotypic data. In a granddaughter design, 171 markers were typed on all 29 bovine autosomes. Associations between markers and traits were analysed by multiple marker regression. Multi-trait analyses were carried out with a variance component based approach for the chromosomes and trait combinations, which were observed significant in the regression method. Twenty-two chromosome-wise significant QTL were detected. Several of the detected QTL areas were overlapping with milk production QTL previously identified in the same population. Multi-trait QTL analyses were carried out to test if these effects were due to a pleiotropic QTL affecting fertility and milk yield traits or to linked QTL causing the effects. This distinction could only be made with confidence on BTA1 where a QTL affecting milk yield is linked to a pleiotropic QTL affecting days open and fertility treatments. 相似文献
4.
Enrique Sánchez-Molano John A Woolliams Ricardo Pong-Wong Dylan N Clements Sarah C Blott Pamela Wiener 《BMC genomics》2014,15(1)
Background
Canine hip dysplasia (CHD) is characterised by a malformation of the hip joint, leading to osteoarthritis and lameness. Current breeding schemes against CHD have resulted in measurable but moderate responses. The application of marker-assisted selection, incorporating specific markers associated with the disease, or genomic selection, incorporating genome-wide markers, has the potential to dramatically improve results of breeding schemes. Our aims were to identify regions associated with hip dysplasia or its related traits using genome and chromosome-wide analysis, study the linkage disequilibrium (LD) in these regions and provide plausible gene candidates. This study is focused on the UK Labrador Retriever population, which has a high prevalence of the disease and participates in a recording program led by the British Veterinary Association (BVA) and The Kennel Club (KC).Results
Two genome-wide and several chromosome-wide QTLs affecting CHD and its related traits were identified, indicating regions related to hip dysplasia.Conclusion
Consistent with previous studies, the genetic architecture of CHD appears to be based on many genes with small or moderate effect, suggesting that genomic selection rather than marker-assisted selection may be an appropriate strategy for reducing this disease.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-833) contains supplementary material, which is available to authorized users. 相似文献5.
The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage 总被引:1,自引:0,他引:1
Wright D Rubin CJ Martinez Barrio A Schütz K Kerje S Brändström H Kindmark A Jensen P Andersson L 《Molecular ecology》2010,19(23):5140-5156
The extent of pleiotropy and epistasis in quantitative traits remains equivocal. In the case of pleiotropy, multiple quantitative trait loci are often taken to be pleiotropic if their confidence intervals overlap, without formal statistical tests being used to ascertain if these overlapping loci are statistically significantly pleiotropic. Additionally, the degree to which the genetic correlations between phenotypic traits are reflected in these pleiotropic quantitative trait loci is often variable, especially in the case of antagonistic pleiotropy. Similarly, the extent of epistasis in various morphological, behavioural and life-history traits is also debated, with a general problem being the sample sizes required to detect such effects. Domestication involves a large number of trade-offs, which are reflected in numerous behavioural, morphological and life-history traits which have evolved as a consequence of adaptation to selective pressures exerted by humans and captivity. The comparison between wild and domestic animals allows the genetic analysis of the traits that differ between these population types, as well as being a general model of evolution. Using a large F(2) intercross between wild and domesticated chickens, in combination with a dense SNP and microsatellite marker map, both pleiotropy and epistasis were analysed. The majority of traits were found to segregate in 11 tight 'blocks' and reflected the trade-offs associated with domestication. These blocks were shown to have a pleiotropic 'core' surrounded by more loosely linked loci. In contrast, epistatic interactions were almost entirely absent, with only six pairs identified over all traits analysed. These results give insights both into the extent of such blocks in evolution and the development of domestication itself. 相似文献
6.
R. J. GORNALL 《Biological journal of the Linnean Society. Linnean Society of London》1983,20(4):375-383
Speculations on the role of recombination systems in plant domestication are presented. It is suggested that those colonizing species which had more open, or at least more flexible, recombination systems were, in a sense, pre-adapted to domestication. Such systems allow the rapid switching of variability between the potential and free states, an ability which is argued to have been of great importance during the domestication process. Species which were never domesticated, or were abandoned later, are suggested to have had inappropriate recombination systems which did not allow the storage and/or release of sufficient variability. A review of the ecology of recombination systems in disturbed habitats and a comparison of some aspects of the recombination systems in crop progenitors with those in non-cultivated colonizing species provides some evidence both for and against the hypothesis. 相似文献
7.
8.
K. A. Rance S. Mayes Z. Price P. L. Jack R. H. V. Corley 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2001,103(8):1302-1310
The development of an oil palm RFLP marker map has enabled marker-based QTL mapping studies to be undertaken. Information
from 153 RFLP markers was used in combination with phenotypic data from an F2 population to estimate the position and effects of quantitative trait loci (QTLs) for traits including yield of fruit and
its components and measures of vegetative growth. The mapping population consisted of 84 palms segregating for the major gene
influencing shell thickness. Marker data were analysed to produce a linkage map consisting of 22 linkage groups. The QTL mapping
analysis was carried out by interval mapping and single-marker analysis for the unlinked markers; significance thresholds
were generated by permutation. Using both single-marker and interval-mapping analysis significant marker associated QTL effects
were found for 11 of the 13 traits analysed. The results of interval-mapping analysis of fruit weight, petiole cross section
and rachis length, and ratios of shell:fruit, mesocarp:fruit and kernel:fruit indicated significant (P<0.05) QTLs at the genome-wide threshold. The putative QTLs were associated with between 8.2% and 44.0% of the phenotypic
variation, with an average of 27% for the single-marker analysis and 19% for the interval-mapping analysis. The higher percentage
of phenotypic variation explained in the single-marker analysis, when compared to the interval-mapping analysis, is likely
to be due to the lower stringency associated with the single-marker analysis. Large dominance deviations were associated with
a sizeable proportion of the putative QTLs. The ultimate objective of mapping QTLs in commercial populations is to utilise
novel breeding strategies such as marker-assisted selection (MAS). The potential impact of MAS in oil palm breeding programmes
is discussed.
Received: 26 June 2000 / Accepted: 24 October 2000 相似文献
9.
Wu H Pratley J Ma W Haig T 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,107(8):1477-1481
Wheat (Triticum aestivum L.) has been examined for allelopathic potential against annual ryegrass (Lolium rigidum). The bioassay technique, 'equal-compartment-agar-method', was employed to evaluate seedling allelopathy in a doubled-haploid (DH) population derived from cv Sunco (weakly allelopathic) and cv Tasman (strongly allelopathic). A significant difference in allelopathic activity was found among the DH lines, which inhibited the root length of ryegrass across a range from 23.7 to 88.3%. The phenotypic data showed that wheat allelopathic activity was distributed normally within this DH population and a substantial transgressive segregation for seedling allelopathic activity was also found. Analysis of restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) and microsatellite (SSRs) markers identified two major QTLs on chromosome 2B associated with wheat allelopathy. The linkage analysis of genetic markers and the QTLs may improve genetic gains for the allelopathic activity through marker-assisted selection in wheat breeding. The development of wheat allelopathic cultivars could reduce the over-reliance of weed control on synthetic herbicides.Communicated by J. Dvorak 相似文献
10.
BL Gross 《Molecular ecology》2012,21(18):4412-4413
Domesticated rice (Oryza sativa) is one of the world’s most important food crops, culturally, nutritionally and economically ( Khush 1997 ). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing. While many of these studies have been restricted to small sample sizes, in terms of either the number of markers used or the number and distribution of the accessions, costs are now low enough that researchers are including large numbers of molecular markers and accessions. How will these studies relate to previous findings and long‐held assumptions about rice domestication and evolution? If the paper in this issue of Molecular Ecology ( Huang et al. 2012 ) is any indication, there will be some considerable surprises in store. In this study, a geographically and genomically thorough sampling of O. rufipogon and O. sativa revealed two genetically distinct groups of wild rice and also indicated that only one of these groups appears to be related to domesticated rice. While this fits well with previous studies indicating that there are genetic subdivisions within O. rufipogon, it stands in contrast to previous findings that the two major varieties of O. sativa (indica and japonica) were domesticated from two (or more) subpopulations of wild rice. 相似文献
11.
Quantitative trait loci for aluminum resistance in wheat 总被引:4,自引:0,他引:4
Li-Li Zhou Gui-Hua Bai Hong-Xiang Ma Brett F. Carver 《Molecular breeding : new strategies in plant improvement》2007,19(2):153-161
Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs)
in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar,
Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution
culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al
resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter
gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation
in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed
by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived
from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted
selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs. 相似文献
12.
Lin-Bin Zhang Qihui Zhu Zhi-Qiang Wu Jeffrey Ross-Ibarra Brandon S. Gaut Song Ge Tao Sang 《The New phytologist》2009,184(3):708-720
13.
Lou P Zhao J He H Hanhart C Del Carpio DP Verkerk R Custers J Koornneef M Bonnema G 《The New phytologist》2008,179(4):1017-1032
Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL. 相似文献
14.
15.
Luquez VM Sasal Y Medrano M Martín MI Mujica M Guiamét JJ 《Journal of experimental botany》2006,57(6):1363-1372
The natural variation in leaf and plant longevity in Arabidopsis thaliana was analysed in a set of 45 ecotypes and 155 recombinant inbred lines derived from a Cape Verde Islands (Cvi) x Landsberg erecta (Ler) cross. Post-bolting longevity was inversely related to time to flowering and rosette leaf number in the set of 45 ecotypes, with Cvi having the longest and Ler the shortest post-bolting longevity. The recombinant inbred line population was tested under low or high soil nutrient levels (LN or HN, respectively). Three quantitative trait loci (QTL), one in chromosome 3 and two in chromosomes 1 and 5, were associated with longevity of the 6th rosette leaf under LN and HN, respectively. Four QTL for post-bolting longevity were found in chromosomes 1, 3, 4, and 5, and two in chromosomes 1 and 5 under LN and HN, respectively. An epistatic interaction affecting post-bolting longevity under LN, but not HN, was detected. Ler and Cvi carry a mix of increasing and decreasing alleles for the QTL affecting longevity of the 6th leaf and post-bolting longevity. Longevity of the 6th rosette leaf was associated with different QTL than post-bolting longevity, and it was affected by different QTL depending on nutrient availability. By contrast, the major QTL affecting post-bolting longevity exerted significant effects irrespective of soil nutrient availability. 相似文献
16.
The complex history of the domestication of rice 总被引:9,自引:1,他引:9
BACKGROUND: Rice has been found in archaeological sites dating to 8000 bc, although the date of rice domestication is a matter of continuing debate. Two species of domesticated rice, Oryza sativa (Asian) and Oryza glaberrima (African) are grown globally. Numerous traits separate wild and domesticated rices including changes in: pericarp colour, dormancy, shattering, panicle architecture, tiller number, mating type and number and size of seeds. SCOPE: Genetic studies using diverse methodologies have uncovered a deep population structure within domesticated rice. Two main groups, the indica and japonica subspecies, have been identified with several subpopulations existing within each group. The antiquity of the divide has been estimated at more than 100 000 years ago. This date far precedes domestication, supporting independent domestications of indica and japonica from pre-differentiated pools of the wild ancestor. Crosses between subspecies display sterility and segregate for domestication traits, indicating that different populations are fixed for different networks of alleles conditioning these traits. Numerous domestication QTLs have been identified in crosses between the subspecies and in crosses between wild and domesticated accessions of rice. Many of the QTLs cluster in the same genomic regions, suggesting that a single gene with pleiotropic effects or that closely linked clusters of genes underlie these QTL. Recently, several domestication loci have been cloned from rice, including the gene controlling pericarp colour and two loci for shattering. The distribution and evolutionary history of these genes gives insight into the domestication process and the relationship between the subspecies. CONCLUSIONS: The evolutionary history of rice is complex, but recent work has shed light on the genetics of the transition from wild (O. rufipogon and O. nivara) to domesticated (O. sativa) rice. The types of genes involved and the geographic and genetic distribution of alleles will allow scientists to better understand our ancestors and breed better rice for our descendents. 相似文献
17.
Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm 总被引:9,自引:0,他引:9
P. M. Hayes B. H. Liu S. J. Knapp F. Chen B. Jones T. Blake J. Franckowiak D. Rasmusson M. Sorrells S. E. Ullrich D. Wesenberg A. Kleinhofs 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1993,87(3):392-401
Quantitative trait locus (QTL) and QTL x environment (E) interaction effects for agronomic and malting quality traits were measured using a 123-point linkage map and multi-environment phenotype data from an F1-derived doubled haploid population of barley (Hordeum vulgare). The QTL × E interactions were due to differences in magnitude of QTL effects. Highly significant QTL effects were found for all traits at multiple sites in the genome. Yield QTL peaks and support intervals often coincided with plant height and lodging QTL peaks and support intervals. QTL were detected in the vicinity of a previously mapped Mendelian maturity locus and known function probes for- and-amylase genes. The average map density (9.6 cM) should be adequate for molecular marker-assisted selection, particularly since there were few cases of alternative favorable alleles for different traits mapping to the same or adjacent intervals.Oreg Agric Exp Stn J No. 10150 相似文献
18.
Svetec N Werzner A Wilches R Pavlidis P Alvarez-Castro JM Broman KW Metzler D Stephan W 《Molecular ecology》2011,20(3):530-544
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5–14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified. 相似文献
19.
Chang-Kug Kim Young-Joo Seol Dong-Jun Lee Jae-Hee Lee Tae-Ho Lee Dong-Suk Park 《Bioinformation》2014,10(10):664-666
The National Agricultural Biotechnology Information Center (NABIC) in South Korea reconstructed a RiceQTLPro database for
gene positional analysis and structure prediction of the chromosomes. This database is an integrated web-based system providing
information about quantitative trait loci (QTL) markers in rice plant. The RiceQTLPro has the three main features namely, (1) QTL
markers list, (2) searching of markers using keyword, and (3) searching of marker position on the rice chromosomes. This updated
database provides 112 QTL markers information with 817 polymorphic markers on each of the 12 chromosomes in rice.
Availability
The database is available for free at http://nabic.rda.go.kr/gere/rice/geneticMap/ 相似文献20.
Hyeun-Kyeung Kim Sung-Taeg Kang Jun-Hyeun Cho Myoung-Gun Choung Duck-Yong Suh 《Journal of Plant Biology》2005,48(1):106-112
Oligosaccharides and sucrose are very important nutritional components in soybean seeds. However, little information is available about their inheritance. We used molecular markers to identify the genomic regions significantly associated with the quantitative trait locus (QTL) that controls oligosaccharide and sucrose contents in segregating F2:10 Rl lines. Two related, but independent, QTLs were identified for oligosaccharides — near marker satt546 on linkage group (LG) D1b+W and satt278 on LG L. Four others, for sucrose content, were located at LG B1 (satt197), D1b+W (satt546), and L (satt523 and satt278). Finally, we found two common QTLs, on LG D1b+W and L, that are associated with both oligosaccharides and sucrose. 相似文献