首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water vapour conductances of single attached leaves were measuredover a range of humidities in 12 annual species grown underone set of environmental conditions in a controlled environmentchamber, as well as in several of these species grown at differentair temperatures and levels of irradiance. Low growth temperaturedecreased the sensitivity of leaf conductance to changes invapour pressure difference, whereas low levels of irradianceduring growth increased the sensitivity. The degree of changein sensitivity with change in growth environment varied betweenspecies. There was a wide range of sensitivities of leaf conductancein species grown in the same environment, without any relationshipto pathway of photosynthetic carbon fixation or climatic range.A strong relationship between sensitivity of leaf conductanceand the length of the root system per unit of plant area wasfound between species and between growth environments. Thisrelationship could be used to predict accurately the sensitivitiesof leaf conductance for plants grown in other environments.  相似文献   

2.
The hypothesis that soil water potential (s) is better correlatedto heliotropic leaf orientation, photosaturated photosyntheticCO2 assimilation and stomatal conductance during periods oflimited water availability than is bulk leaf water potential(1) was examined in greenhouse-grown soybean (Glycine max) plants,submitted to a progressive drought. Paired plants were exposedto either 1000 or 100 µmol m–2 s–1 photonflux densities (PFD) for 45–60 mins. The higher irradianceinduced short-term decreases in 1, due to increased transpiration,while l in the plant exposed to low PFD did not decrease. Thesechanges in 1 occurred independently of changes in soil waterstatus. Concurrent to the light treatments, a single attachedleaf from each of the two plants was isolated from the restof the plant by shading, and the pulvinus of its terminal leafletwas exposed to a perpendicular PFD of 500 µmol m–2S–1. Leaf movement of this leaflet was recorded in responseto this light, until a stable leaflet angle was achieved. Valuesof s and l (before and after light treatment), and photosaturatedrates of photosynthesis and stomatal conductance, were thenmeasured on these leaves. Leaflet angle and gas exchange werebetter correlated with s (r2 = 0.50, 0.50 and 0.57 for angle,photosynthesis and conductance, respectively) than with l especiallywhen l was the result of short-term, high-light induced changesin leaf water status (r2 = 0.36, 0.32 and 0.49, for the sameparameters). Leaflet angle was also correlated with stomatalconductance (r2 = 0.61) and photosynthetic rate (r2 = 0.60),suggesting a close association between leaf orientation, leafmetabolism and soil water availability. Glycine max (L.) Merr. cv. Essex, soybean, heliotropism, water potential, photosynthesis, stomatal conductance, solar tracking  相似文献   

3.
A few potato clones, such as A6948-4, had higher rates of photosynthesis in the field than the Russet Burbank and were able to maintain higher rates not only during mid-day but also in the early morning and late evening hours. In addition, they maintained higher carbon assimilation rates over a range of photosynthetic photon flux density from 400 to 2,000 microeinsteins per square meter per second.

Stomatal conductance increased linearly as irradiance increased from 500 to 2,000 microeinsteins per square meter per second with all four potato clones that were examined. Obviously, comparative measurements of stomatal conductance or diffusive resistance with potato must be taken at a known and constant photosynthetic photon flux density.

The upper (adaxial) leaf surface of some potato clones provided a surprising contribution to total carbon assimilation. Neither stomatal conductance, number of stomata per unit area, total area of the stomatal apparatus, nor chlorophyll content appear to account for differences in carbon assimilation rates among clones.

  相似文献   

4.
光慈姑叶片光合速率日变化规律的研究   总被引:2,自引:0,他引:2  
以野生和栽培光慈姑植株为材料,研究了光慈姑叶片光合速率日变化规律和环境因子对其的影响,比较了不同生育期光合速率的大小。结果表明:3月份结果的光慈姑叶片净光合速率日变化呈单峰曲线,4月结果的光慈姑叶片净光合速率日变化呈双峰曲线,光合“午睡”现象明显;开花期与结果期的净光合速率日变化差异显著,开花期的净光合速率大于结果期的净光合速率。栽培条件下,叶片净光合速率大于野生状态下的光合速率。  相似文献   

5.
Detached corn and sunflower leaves exposed to various concentrations of Cd, supplied as CdCl2, exhibit reduced photosynthesis and transpiration. The reduction is dependent on the concentration of CdCl2 solution and generally becomes more pronounced with time. In sunflower, net photosynthesis and transpiration are completely inhibited within 45 min after the introduction of 18 mM Cd. Within two hours net photosynthesis is reduced to 40% and 70% of maximum after the introduction of 9 and 4.5 mM Cd respectively. In corn the trend of photo-synthetic response to Cd is similar to that in sunflower except that the inhibition in corn is more pronounced at all treatment levels. A strong linear relationship between photosynthesis and transpiration inhibition is obtained in both species suggesting that Cd contamination induces stomatal closure.  相似文献   

6.
The characteristics of ABA-induced changes in the fluxes ofCO2 and water vapour from whole leaves of spring wheat (Triticumaestivum cv. Wembley) were examined. Aqueous solutions of ABAwere supplied via the transpiration stream to intact leavesof different ages mounted within a gas exchange cuvette. ABA caused a reduction in stomatal conductance (g) that wasproportional to the concentration in the solution fed to theleaf. For the maintenance of a reduction in g there was a requirementfor a continual supply of ABA. At concentrations greater than10–2 mol m–3 ABA reduced g by at least 50% of thecontrol value, while 1.0 mol m–3 closed stomata within2 h. Concentrations as low as 10–3 mol m–3 produceda 20% reduction in g. As leaves aged they became less responsiveto applied ABA. The possibility that the stomatal response may change aftera leaf has previously experienced a pulse of ABA was exploredby repeating the exposure of a leaf to 10–2 mol m–3ABA. The first pulse of ABA produced a greater reduction ing than a subsequent exposure the following day. This declinein response of g to ABA on repeated exposure was maintainedwith leaves of different ages. The characteristics of the stomatal response to ABA are discussedin the context of what is known about the location of receptorsfor the hormone. It seems likely that a failure to respond toABA that has previously accumulated in the guard cells shouldbe viewed by means of maximizing the sensitivity to the currentsupply of ABA. It is suggested that the smaller response ofthe stomata of older leaves to ABA makes them more susceptibleto water stress, so that they can act as sensors for decliningwater potentials to give early protection to younger, metabolicallyactive leaves. Key words: Abscisic acid, leaf age, stomatal conductance, Triticum aestivum  相似文献   

7.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities (PPFD) of 150 to 950µmolphotons m–2 s–1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO2 m–2 s–1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytimePPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning  相似文献   

8.
Cuticular Conductance and the Humidity Response of Stomata   总被引:4,自引:0,他引:4  
Meidner, H. 1986. Cuticular conductance and the humidity responseof stomata.—J. exp. Bot. 37: 517–525. Detailed measurements of cuticular vapour loss from leaves ofseveral species showed that cuticular conductance declined froman early morning maximum of 0?02 cm s–1 to between 0?004and 0.005 cm scm s–1 even in the absence of stomatal transpiration.Re-establishment of the maximum conductance occurred only ina humid atmosphere and when the xylem system was under pressure(simulated mild root pressure) Cuticular vapour loss alone is,therefore, unlikely to be the underlying mechanism of the humidityresponse of Stomata. Evidence for the existence of a humidity-sensing feed-forwardmechanism is discussed and it is shown that when detailed measurementsare made the humidity response is found to have two phases.This indicates a perturbation of the fine turgor balance betweenepidermat and guard cells that exists in a transpiring leaf.It is argued that the humidity response can be accounted forby reference to hydropassive movements which initiate a metabolicadjustment of the guard cells to altered evaporative demand. Key words: Cuticle, conductance, humidity, stomata, transpiration  相似文献   

9.
Role of superoxide dismutase isozymes and other antioxidant enzymes was studied in relation to leaf age in sunflower (Helianthus annuus L. cv. ACC 1508) at pre-flowering and grain filling stages. Relative water content (RWC) did not change much in leaves of different age and at the two stages. Protein content declined continuously from the youngest to the oldest leaf, while chlorophyll (Chl) and carotenoids (Car) contents increased down to 7th/9th leaf and declined in subsequent older leaves. Protein, Chl and Car contents were higher at pre-flowering than at seed filling stage. Superoxide dismutase (SOD), its isozymes, and ascorbate peroxidase (APO) and catalase (CAT) activities were highest in the 9th leaf and declined in subsequent older leaves. SOD and APO activities were higher at seed filling, except in oldest senescent (13th, 15th) leaves. Among SOD isozymes, Cu/Zn-SOD and Mn-SOD activities accounted for most of the total SOD, and only marginal activity was observed for Fe-SOD. Peroxidase activity increased from youngest to the oldest leaf at pre-flowering stage and down to 13th leaf at seed filling stage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Stimulation of the rate of photosynthesis at 2·0 kPaO2 in comparison with 21 kPa O2 and carbohydrate accumulationover 4h were measured during exposure of sunflower (Helianthusannuus L.) and rape (Brassica napus L.), grown at 30 °Cand 13 °C, to temperatures between 7 °C and 35 °C.The effect of reducing source: sink ratio by shading on theresponse of photosynthetic rate to temperature was also determined.Stimulation of photosynthesis by 2·0 kPa O2 in comparisonwith 21 kPa O2 decreased over 4 h at cool temperatures in sunflowerplants grown at 30 °C but not in rape grown at 30 °C.Stimulation did not decrease over 4 h in plants grown at 13CC. Sucrose was the main carbohydrate accumulated over 4 h;its accumulation increased with decreasing temperature. Starchaccumulation either decreased or remained the same with decreasingtemperature. In plants grown at 30 °C more carbohydrateaccumulated between 8 °C and 21 °C in sunflower thanin rape, but more carbohydrate accumulated at 30 °C in rapethan in sunflower. In plants grown at 13 °C much less carbohydrateaccumulated between 13 °C and 23 °C than in plants grownat 30 °C. Photosynthetic rate in plants grown at 30 °Cexposed to between 20 °C and 35 °C over 32 h (14 h light-10h dark-8 h light), declined over 32 h at 20 °C and 25 °Cin sunflower and at 20 °C in rape. This fall over 32 h,especially at 20 °C in sunflower, was significantly reducedby shading the rest of the plant. Shading had little effecton photosynthetic rate above 25 °C. The work confirms thatlow temperature imposes a sink-limitation on photosynthesiswhich occurs at higher temperatures in sunflower than in rape.This limitation may be relieved by decreasing the source:sinkratio. Key words: Sunflower, rape, photosynthesis, carbohydrates, sink demand, temperature  相似文献   

11.
The effects of SO2 on stomatal aperture of attached sunflower leaves were observed with a remote-control light microscope system that permitted continuous observation of stomatal responses over periods of several hours. The relationship between actual stomatal aperture and stomatal conductance, measured with a porometer, also was examined on leaves before and after exposure to SO2.

A distinction between uninjured and injured regions was clearly visible on leaves after exposure to 1.5 microliters per liter SO2 for less than an hour. During the exposure, the mean value of apertures for many stomata, which indicates stomatal conductance and transpiration rate, tended to decrease simultaneously in the uninjured and injured regions. However, the rate of decrease in the injured region was slower than that in the uninjured region because of a transient opening induced by water-soaking in the injured region. The transient opening was less common in stomata near veins and veinlets.

There was a good correlation between pore width and stomatal conductance measured with a porometer before exposure to SO2. This correlation continued in leaves exposed to SO2 until visible, irreversible injury occurred, but then it disappeared.

The results of these experiments indicate the necessity of continuous observation of individual stomata under the microscope to understand the effects of air pollutants such as SO2 on stomatal behavior.

  相似文献   

12.
对不同花期桂花的光合作用、蒸腾作用日变化及二者与环境因子的相互作用进行研究.结果表明:处于不同花期的桂花净光合速率日变化为典型的双峰曲线,有明显的"午休"现象;蒸腾速率日变化总体趋势是先升高后降低.盛花期桂花净光合速率(Pn)最大,蒸腾作用最强,而且蒸腾作用的日变化最大.水分利用率最高.气孔导度与光合速率呈显著的正相关.叶面温度、光照强度、水蒸气压浓度差与蒸腾速率有明显正相关性.  相似文献   

13.
Bunce  J.A. 《Photosynthetica》2000,38(1):83-89
Leaves developed at high irradiance (I) often have higher photosynthetic capacity than those developed at low I, while leaves developed at elevated CO2 concentration [CO2] often have reduced photosynthetic capacity compared with leaves developed at lower [CO2]. Because both high I and elevated [CO2] stimulate photosynthesis of developing leaves, their contrasting effects on photosynthetic capacity at maturity suggest that the extra photosynthate may be utilized differently depending on whether I or [CO2] stimulates photosynthesis. These experiments were designed to test whether relationships between photosynthetic income and the net accumulation of soluble protein in developing leaves, or relationships between soluble protein and photosynthetic capacity at full expansion differed depending on whether I or [CO2] was varied during leaf development. Soybean plants were grown initially with a photosynthetic photon flux density (PPFD) of 950 µmol m–2 s–1 and 350 µmol [CO2] mol–1, then exposed to [CO2] ranging from 135 to 1400 µmol mol–1 for the last 3 d of expansion of third trifoliolate leaves. These results were compared with experiments in which I was varied at a constant [CO2] of 350 µmol mol–1 over the same developmental period. Increases in area and dry mass over the 3 d were determined along with daily photosynthesis and respiration. Photosynthetic CO2 exchange characteristics and soluble protein content of leaves were determined at the end of the treatment periods. The increase in leaflet mass was about 28 % of the dry mass income from photosynthesis minus respiration, regardless of whether [CO2] or I was varied, except that very low I or [CO2] increased this percentage. Leaflet soluble protein per unit of area at full expansion had the same positive linear relationship to photosynthetic income whether [CO2] or I was varied. For variation in I, photosynthetic capacity varied directly with soluble protein per unit area. This was not the case for variation in [CO2]. Increasing [CO2] reduced photosynthetic capacity per unit of soluble protein by up to a factor of 2.5, and photosynthetic capacity exhibited an optimum with respect to growth [CO2]. Thus CO2 did not alter the relationship between photosynthetic income and the utilization of photosynthate in the net accumulation of soluble protein, but did alter the relationship between soluble protein content and photosynthetic characteristics in this species.  相似文献   

14.
SHARPE  P. J. H. 《Annals of botany》1983,52(3):325-343
This analysis suggests that a model of the temperature dependenceof carbon exchange by a plant can be developed based upon absolutereaction rate theory. Component temperature-dependent physiologicalprocesses necessary to describe net photosynthesis over thebiological temperature range include the light reaction, darkreaction (carboxylase CO2 uptake, oxygenase photorespiration)and mitochondrial dark respiration. An essential assumptionof the model is the reversibility of thermal inhibition. Supportingevidence for this assumption is provided within the biologicalrange. Thermodynamic constants were found to be strongly correlatedwith the thermal environment to which they were adapted. Therewas little difference in non-photorespiration thermodynamicconstants between C2 andC4species within thermal habitat types.The model shows the observed shift in temperature optima withlight intensity as a natural consequence of enzyme kineticsand absolute reaction rate theory. photosynthesis, photorespiration, dark respiration, temperature response, carbon exchange, mathematical model  相似文献   

15.
16.
干旱条件下大豆叶片H_2O_2代谢变化及其同抗旱性的关系   总被引:3,自引:0,他引:3  
干旱条件下大豆叶片H_2O_2含量增加,AsA POD与 GR活性均表现“先上升后下降”的趋势。叶片AsA与GSH含量均随干旱时间的延长而逐渐下降,而PPOD活性则持续增加。抗旱性较强的小粒大豆品种7605在干旱条件下能维持较强的 H_2O_2清除能力,H_2O_2累积较少。  相似文献   

17.
The goal of the present study was to examine the effects of slow and rapid changes of ozone (O3) concentrations on the physiological behaviour of current-year needles of Norway spruce (Picea abies (L.) Karst.). For this purpose five-year-old spruce seedlings were exposed in growth chambers for 49 days to either charcoal-filtered air, slowly increasing O3 concentrations from zero up to 100 nl I?1 in weekly steps of 25 nl I?1, or immediately to 100 nl I?1 of O3. During the investigation period gas exchange, carbohydrate and antioxidant contents of the current flush were measured. In needles which experienced slowly increasing O3 concentrations, cumulative O3 uptake was approximately 30 % lower than in needles continuously fumigated with 100 nl I?1 of O3. The higher 03 uptake in the permanent 100 nl I?1 O3 treatment caused a pronounced decline in net photosynthesis, in the efficiency of CO2 uptake and in the starch content of the seedlings. Initially the ascorbate pool increased, but after 5 weeks of exposure ascorbate concentrations declined and were comparable to values obtained in charcoal-filtered controls, while the thiol contents were enhanced during fumigation with permanent 100 nl I-?1 O3. On the contrary, slowly increasing O3 caused a significant increase in total needle ascorbate throughout the fumigation period, which probably prevented an O3-induced decline in the photosynthetic machinery as photosynthesis was not affected although the thiol contents were not enhanced. Furthermore, starch content was slightly higher than in O3-free controls. These results suggest that seedlings of Norway spruce have the possibility to acclimate to O3 stress, as slowly increasing O3 concentrations seemed to increase resistance and the seedlings were able to compensate.  相似文献   

18.
Raschke K 《Plant physiology》1970,45(4):415-423
Stomata of Zea mays L. respond to changes in hydrostatic pressure in the water supply of the leaves almost instantaneously and in all leaf parts simultaneously. Therefore, the leaf is a hydraulic unit. The stomata are part of it and their aperture is controlled by the water potential in the water-conducting system. Stomatal aperture is not uniquely related to the relative water content of a leaf. The relation depends also on the humidity in the air and is different for the upper and the lower epidermis.  相似文献   

19.
Sunflower leaves, water-stressed under controlled conditions,contained greater amounts of amino acids as their water potentialdecreased, with glycine, serine, and glutamate increasing morethan alanine and aspartate. Proline accumulated only at severestress. Low O2 concentration altered the amounts of amino acids,principally decreasing the amount of glycine and increasingserine. The changes in total pool size are related to previousresults on the accumulation of 14C and the specific activityof products. Photorespiration was large under water stress,where leaves accumulated carbon in glycine of low specific activity,and in 21% O2, where both total amount and specific activityof glycine was greater than in 1.5% O2. This suggests that thereare two pools of glycine, one controlled by O2 and closely relatedto photosynthesis, the other non-photosynthetic and affectedby water stress. The organic acids suocinate, citrate, and fumarate increasedat small leaf-water potentials. Sucrose decreased in amountwith stress and was absent at the most severe stress; therewas less glucose and fructose. The amount of carbon lost fromsugars was similar to the amount accumulated in amino acidstogether with the carbon lost in respiration. It is concluded that stress decreased the flux of carbon fromphotosynthesis for the synthesis of amino acids and sugars butmore carbon from stored materials, principally sucrose, wasused in the production of organic acids and amino acids.  相似文献   

20.
Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO2 exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO2 concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO2 concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO2 concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO2 concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO2; they responded to changes in CO2 concentration in the range from 100 to 1000 microliters per liter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号