首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
In eukaryotes, newly synthesized proteins interact co-translationally with a multitude of different ribosome-bound factors and chaperones including the conserved heterodimeric nascent polypeptide-associated complex (NAC) and a Hsp40/70-based chaperone system. These factors are thought to play an important role in protein folding and targeting, yet their specific ribosomal localizations, which are prerequisite for their functions, remain elusive. This study describes the ribosomal localization of NAC and the molecular details by which NAC is able to contact the ribosome and gain access to nascent polypeptides. We identified a conserved RRK(X)nKK ribosome binding motif within the beta-subunit of NAC that is essential for the entire NAC complex to attach to ribosomes and allow for its interaction with nascent polypeptide chains. The motif localizes within a potential loop region between two predicted alpha-helices in the N terminus of betaNAC. This N-terminal betaNAC ribosome-binding domain was completely portable and sufficient to target an otherwise cytosolic protein to the ribosome. NAC modified with a UV-activatable cross-linker within its ribosome binding motif specifically cross-linked to L23 ribosomal protein family members at the exit site of the ribosome, providing the first evidence of NAC-L23 interaction in the context of the ribosome. Mutations of L23 reduced NAC ribosome binding in vivo and in vitro, whereas other eukaryotic ribosome-associated factors such as the Hsp70/40 chaperones Ssb or Zuotin were unaffected. We conclude that NAC employs a conserved ribosome binding domain to position itself on the L23 ribosomal protein adjacent to the nascent polypeptide exit site.  相似文献   

2.
George R  Walsh P  Beddoe T  Lithgow T 《FEBS letters》2002,516(1-3):213-216
The nascent polypeptide-associated complex (NAC) is a peripheral component of cytoplasmic ribosomes, and interacts with nascent chains as they leave the ribosome. Yeast mutants lacking NAC translate polypeptides normally, but have fewer ribosomes associated with the mitochondrial surface. The mutants lacking NAC suffer mitochondrial defects and have decreased levels of proteins like fumarase, normally targeted to mitochondria co-translationally. NAC might contribute to a ribosomal environment in which amino-terminal, mitochondrial targeting sequences can effectively adopt their appropriate conformation.  相似文献   

3.
Nascent polypeptide-associated complex (NAC) is probably the first cytosolic protein to contact nascent polypeptide chains emerging from ribosomes. In this way NAC prevents inappropriate interactions with other factors. Eventually other factors involved in targeting and folding, like the Signal Recognition Particle or cytosolic chaperones, must gain access to the nascent chain. All NAC preparations to date consist of two copurifying polypeptides. Here we rigorously show that these two polypeptides, termed alpha- and betaNAC, form a very stable complex in vivo and in vitro and that a functional complex can be reconstituted from the individual subunits. A dissection of the contributions of the individual subunits to NACs function revealed that both subunits are in direct contact with nascent polypeptide chains on the ribosome and that both contribute to the prevention of inappropriate interactions. However, betaNAC alone directly binds to the ribosome and is sufficient to prevent ribosome binding to the endoplasmic reticulum membrane.  相似文献   

4.
L W Bergman  W M Kuehl 《Biochemistry》1977,16(20):4490-4497
We have investigated the process of protein glycosylation in an attempt to answer the question of whether glucosamine and mannose are added to nascent chains prior to chain completion or only to completed chains after release from the ribosome. The MPC 11 mouse plasmacytoma cell line used in these studies synthesizes a glycosylated gamma2b heavy chain which accounts for 12% of the total protein synthesis. Nascent chains were separated from completed chains by ion-exchange chromatography of solubilized ribosomes on QAE-Sephadex. Our results indicate that both glucosamine and mannose are incorporated into nascent heavy chains prior to chain completion and release from the ribosome. Gel analysis of specifically immunoprecipitated nascent chains indicates that the carbohydrate moiety can be added to the nascent heavy chains very soon after the presumptive asparaginyl glycosylation site (CH2 domain) is synthesized on the ribosome.  相似文献   

5.
6.
We have investigated the in vivo co-translational covalent modification of nascent immunoglobulin heavy and light chains. Nascent polypeptides were separated from completed polypeptides by ion-exchange chromatography of solubilized ribosomes on QAE-Sephadex. First, we have demonstrated that MPC 11 nascent heavy chains are quantitatively glycosylated very soon after the asparaginyl acceptor site passes through the membrane into the cisterna of the rough endoplasmic reticulum. Nonglycosylated completed heavy chains of various classes cannot be glycosylated after release from the ribosome, due either to rapid intramolecular folding and/or intermolecular assembly, which cause the acceptor site to become unavailable for the glycosylation enzyme. Second, we have shown that the formation of the correct intrachain disulfide loop within the first light chain domain occurs rapidly and quantitatively as soon as the appropriate cysteine residues of the nascent light chain pass through the membrane into the cisterna of the endoplasmic reticulum. The intrachain disulfide loop in the second or constant region domain of the light chain is not formed on nascent chains, because one of the cysteine residues involved in this disulfide bond does not pass through the endoplasmic reticulum membrane prior to chain completion and release from the ribosome. Third, we have demonstrated that some of the initial covalent assembly (formation of interchain disulfide bonds) occurs on nascent heavy chains prior to their release from the ribosome. The results are consistent with the pathway of covalent assembly of the cell line, in that completed light chains are assembled onto nascent heavy chains in MPC 11 cells (IgG2b), where a heavy-light half molecule is the major initial covalent intermediate; and completed heavy chains are assembled onto nascent heavy chains in MOPC 21 cells (IgG1), where a heavy chain dimer is the major initial disulfide linked intermediate.  相似文献   

7.
Cotranslational protein maturation is often studied in cell-free translation mixtures, using stalled ribosome-nascent chain complexes produced by translating truncated mRNA. This approach has two limitations: (i) it can be technically challenging, and (ii) it only works in vitro, where the concentrations of cellular components differ from concentrations in vivo. We have developed a method to produce stalled ribosomes bearing nascent chains of a specified length by using a 'stall sequence', derived from the Escherichia coli SecM protein, which interacts with residues in the ribosomal exit tunnel to stall SecM translation. When the stall sequence is expressed at the end of nascent chains, stable translation-arrested ribosome complexes accumulate in intact cells or cell-free extracts. SecM-directed stalling is efficient, with negligible effects on viability. This method is straightforward and suitable for producing stalled ribosome complexes in vivo, permitting study of the length-dependent maturation of nascent chains in the cellular milieu.  相似文献   

8.
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein‐folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide‐associated complex). Under non‐stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome‐associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re‐localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation‐prone polyglutamine‐expansion proteins and Aβ‐peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.  相似文献   

9.
Ribosome-associated protein biogenesis factors (RPBs) act during a short but critical period of protein biogenesis. The action of RPBs starts as soon as a nascent polypeptide becomes accessible from the outside of the ribosome and ends upon termination of translation. In yeast, RPBs include the chaperones Ssb1/2 and ribosome-associated complex, signal recognition particle, nascent polypeptide-associated complex (NAC), the aminopeptidases Map1 and Map2, and the Nalpha-terminal acetyltransferase NatA. Here, we provide the first comprehensive analysis of RPB binding at the yeast ribosomal tunnel exit as a function of translational status and polypeptide sequence. We measured the ratios of RPBs to ribosomes in yeast cells and determined RPB occupation of translating and non-translating ribosomes. The combined results imply a requirement for dynamic and coordinated interactions at the tunnel exit. Exclusively, NAC was associated with the majority of ribosomes regardless of their translational status. All other RPBs occupied only ribosomal subpopulations, binding with increased apparent affinity to randomly translating ribosomes as compared with non-translating ones. Analysis of RPB interaction with homogenous ribosome populations engaged in the translation of specific nascent polypeptides revealed that the affinities of Ssb1/2, NAC, and, as expected, signal recognition particle, were influenced by the amino acid sequence of the nascent polypeptide. Complementary cross-linking data suggest that not only affinity of RPBs to the ribosome but also positioning can be influenced in a nascent polypeptide-dependent manner.  相似文献   

10.
The nascent chain-associated complex (NAC) is a dimeric protein complex of archaea and eukarya that interacts with ribosomes and translating polypeptide chains. We show that, in yeast, NAC and the signal-recognition particle (SRP) share the universally conserved ribosomal protein L25 as a docking site, which is in close proximity to the ribosomal exit tunnel. The amino-terminal segment of beta-NAC was found to be required for L25 binding. Purified NAC can prevent protein aggregation in vitro and thus shows certain properties of a molecular chaperone. Interestingly, the alpha-subunit of NAC interacts with the 54 kDa subunit of SRP. Consistent with a regulatory role of NAC in protein translocation into the endoplasmic reticulum (ER), we find that deletion of NAC results in an induction of the ER stress-response pathway. These results identify L25 as a conserved interaction platform for specific cytosolic factors that guide nascent polypeptides to their proper cellular destination.  相似文献   

11.
12.
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is highly conserved from yeast to humans. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila, and Caenorhabditis elegans. NAC was suggested to protect the nascent chain from inappropriate early interactions with cytosolic factors. Eukaryotic NAC is a heterodimer with two subunits sharing substantial homology with each other. All sequenced archaebacterial genomes exhibit only one gene homologous to the NAC subunits. Here we present the first archaebacterial NAC homolog. It forms a homodimer, and as eukaryotic NAC it is associated with ribosomes and contacts the emerging nascent chain on the ribosome. We present the first crystal structure of a NAC protein revealing two structural features: (i) a novel unique protein fold that mediates dimerization of the complex, and (ii) a ubiquitin-associated domain that suggests a yet unidentified role for NAC in the cellular protein quality control system via the ubiquitination pathway. Based on the presented structure we propose a model for the eukaryotic heterodimeric NAC domain.  相似文献   

13.
Protein carboxymethylase from bovine anterior pituitary is found to be capable of carboxymethylating proteins in an in vitro protein synthesizing system which includes S-adenosyl-L-methionine-[14C methyl], wheat germ ribosomes and oviduct mRNA. Optimal carboxymethylation is inhibited by puromycin indicating the requirement for de novo protein synthesis. Ultracentrifugal profiles show that carboxymethylated proteins are associated with ribosomal absorption peaks. This is consistent with the carboxymethylation of proteins occurring on nascent peptide chains.  相似文献   

14.
15.
The journey of nascent polypeptides from synthesis at the peptidyl transferase center of the ribosome ("birth") to full function ("maturity") involves multiple interactions, constraints, modifications and folding events. Each step of this journey impacts the ultimate expression level and functional capacity of the translated protein. It has become clear that the kinetics of protein translation is predominantly modulated by synonymous codon usage along the mRNA, and that this provides an active mechanism for coordinating the synthesis, maturation and folding of nascent polypeptides. Multiple quality control systems ensure that proteins achieve their native, functional form. Unproductive co-translational folding intermediates that arise during protein synthesis may undergo enhanced interaction with components of these systems, such as chaperones, and/or be subjects of co-translational degradation ("death"). This review provides an overview of our current understanding of the complex co-translational events that accompany the synthesis, maturation, folding and degradation of nascent polypeptide chains.  相似文献   

16.
This review analyzes the concept according to which the pathway of synthesized peptide from the ribosome peptidyl transferase center to the exit domain goes along the tunnel of the large subparticle. Experimental data on the accessibility of the nascent polypeptide chain to molecules of modifying agents and fluorescence quenchers are considered. Results of localization of the exit site for the nascent peptide on the ribosome surface, possible conformational states of the peptide, and its mobility and folding on the ribosome are analyzed. The analysis is based on the ribosomal tunnel parameters obtained using X-ray crystallography of whole ribosomes and large ribosomal subparticles. Special attention is given to data that do not fit in the concept of the “tunnel for peptide exit“ and to results already obtained before the reliable tunnel visualization using X-ray crystallography was achieved.  相似文献   

17.
An unbiased photo-cross-linking approach was used to probe the "molecular path" of a growing nascent Escherichia coli inner membrane protein (IMP) from the peptidyl transferase center to the surface of the ribosome. The nascent chain was initially in proximity to the ribosomal proteins L4 and L22 and subsequently contacted L23, which is indicative of progression through the ribosome via the main ribosomal tunnel. The signal recognition particle (SRP) started to interact with the nascent IMP and to target the ribosome-nascent chain complex to the Sec-YidC complex in the inner membrane when maximally half of the transmembrane domain (TM) was exposed from the ribosomal exit. The combined data suggest a flexible tunnel that may accommodate partially folded nascent proteins and parts of the SRP and SecY. Intraribosomal contacts of the nascent chain were not influenced by the presence of a functional TM in the ribosome.  相似文献   

18.
To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide-associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.  相似文献   

19.
The accessibility of nascent polypeptides with special structural elements to the ribosome was investigated. Poly(C), poly(C, U) and poly(C, A) mRNAs were translated by E. coli ribosomes in vitro. The resulting peptides which were rich in prolines, remained on the ribosomal particles or were released after addition of puromycin. A protease from Aspergillus oryzae hydrolyzed the released peptides rapidly, whereas the degradation of the unreleased ones was only slightly affected. This result shows that the nascent peptides were protected against proteolytic attack by the ribosomal particles. Interestingly, the protease completely degraded the 30S particles whereas the 50S ones remained intact, even after prolonged incubation.  相似文献   

20.
Polysomes were isolated from Aspergillus niger and were characterized on sucrose gradients in several ways. First, they were found to be susceptible to degradation by treatment with RNase or EDTA. Second, they were labeled after treating mycelia with short pulses of [3H]uridine or [3H]leucine prior to polysome isolation. Third, they were capable of stimulating incorporation of [3H]leucine into trichloroacetic acid-precipitable material in a chick reticulocyte cell-free protein-synthesizing system. When isolated [3H]leucine pulse-labeled polysomes were treated with either EDTA-RNase or puromycin, 80–90% of the radioactivity was released, indicating that only the nascent polypeptide chains were labeled. After exposing mycelia for 1 min to [14C]mannose, the polysomes were exclusively labeled, indicating that initial glycosylation takes place on nascent polypeptide chains. Preincubation of mycelia with 2-deoxyglucose followed by pulse-labeling with [3H]leucine and [14C]mannose showed that 2-deoxy-d-glucose inhibits both protein synthesis and glycosylation. However, similar preincubation with tunicamycin caused an 80% drop in [14C]mannose label in the polysomes, but only a 10–20% drop of [3H]leucine label, suggesting that glycosylation of nascent chains in A. niger involves an oligosaccharide-lipid intermediate, since it has been shown that tunicamycin inhibits the synthesis of such an intermediate. When isolated polysomes were placed into an in vitro glycosylating mixture containing Mn2+, GDP-[14C]mannose, and smooth membranes from A. niger nascent chains were labeled. This reaction was shown to be dependent on addition of polysomes to the mixture and was not inhibited by 2-deoxy-d-glucose or tunicamycin. Both in vivo and in vitro glycosylated nascent chains were found to have about the same size range, and so it is suggested that in vitro no new oligosaccharide chains were synthesized, but preexisting chains were extended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号