首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kir3.1/Kir3.4 channel is activated by Gbetagamma subunits released on binding of acetylcholine to the M2 muscarinic receptor. A mechanism of channel opening, similar to that for the KcsA and Shaker K+ channels, has been suggested that involves translocation of pore lining transmembrane helices and the opening of an intracellular gate at the "bundle crossing" region. However, in the present study, we show that an extracellular gate at the selectivity filter is critical for agonist activation of the Kir3.1/Kir3.4 channel. Increasing the flexibility of the selectivity filter, by disrupting a salt bridge that lies directly behind the filter, abolished both selectivity for K+ and agonist activation of the channel. Other mutations within the filter that altered selectivity also altered agonist activation. In contrast, mutations within the filter that did not affect selectivity had little if any effect on agonist activation. Interestingly, mutation of bulky side chain phenylalanine residues at the bundle crossing also altered both agonist activation and selectivity. These results demonstrate a significant correlation between agonist activation and selectivity, which is determined by the selectivity filter, and suggests, therefore, that the selectivity filter may act as the agonist-activated gate in the Kir3.1/Kir3.4 channel.  相似文献   

2.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

3.
The Kir3.1/Kir3.4 channel is an inward rectifier, agonist-activated K(+) channel. The location of the binding site within the channel pore that coordinates polyamines (and is thus responsible for inward rectification) and the location of the gate that opens the channel in response to agonist activation is unclear. In this study, we show, not surprisingly, that mutation of residues at the base of the selectivity filter in the pore loop and second transmembrane domain weakens Cs(+) block and decreases selectivity (as measured by Rb(+) and spermine permeation). However, unexpectedly, the mutations also weaken inward rectification and abolish agonist activation of the channel. In the wild-type channel and 34 mutant channels, there are significant (p < 0.05) correlations among the K(D) for Cs(+) block, Rb(+) and spermine permeation, inward rectification, and agonist activation. The significance of these findings is discussed. One possible conclusion is that the selectivity filter is responsible for inward rectification and agonist activation as well as permeation and block.  相似文献   

4.
ROMK channels are regulated by internal pH (pH(i)) and extracellular K(+) (K(+)(o)). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H(+), increasing the apparent pKa for inhibition by approximately 0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K(+)(o), consistent with coupling between the responses to pH(i) and K(+)(o). The ion selectivity sequence of the activation of the channel by cations was K(+) congruent with Rb(+) > NH(4)(+) > Na(+), similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K(+) from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K(+)(o). We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K(+)(o) between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K(+) to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba(2+) block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H(+). We conclude that decreasing pH(I) increases the sensitivity of ROMK2 channels to K(+)(o) by altering the properties of the selectivity filter.  相似文献   

5.
The glycine-tyrosine-glycine (GYG) sequence in the p-loop of K+ channel subunits lines a narrow pore through which K+ ions pass in single file intercalated by water molecules. Mutation of the motif can give rise to non-selective channels, but it is clear that other structural features are also required for selectivity because, for instance, a recently identified class of cyclic nucleotide-gated pacemaker channels has the GYG motif but are poorly K+ selective. We show that mutation of charged glutamate and arginine residues behind the selectivity filter in the Kir3.1/Kir3.4 K+ channel reduces or abolishes K+ selectivity, comparable with previously reported effects in the Kir2.1 K+ channel. It has been suggested that a salt bridge exists between the glutamate-arginine residue pair. Molecular modeling indicates that the salt bridge does exist, and that it acts as a "bowstring" to maintain the rigid bow-like structure of the selectivity filter and restrict selectivity to K+. The modeling shows that relaxation of the bowstring by mutation of the residue pair leads to enhanced flexibility of the p-loop, allowing permeation of other cations, including polyamines. In experiments, mutation of the residue pair can also abolish polyamine-induced inward rectification. The latter effect occurs because polyamines now permeate rather than block the channel, to the remarkable extent that large polyamine currents can be measured.  相似文献   

6.
We studied the effect of monovalent thallium ion (Tl(+)) on the gating of single Kir2.1 channels, which open and close spontaneously at a constant membrane potential. In cell-attached recordings of single-channel inward current, changing the external permeant ion from K(+) to Tl(+) decreases the mean open-time by approximately 20-fold. Furthermore, the channel resides predominantly at a subconductance level, which results from a slow decay (tau = 2.7 ms at -100 mV) from the fully open level immediately following channel opening. Mutation of a pore-lining cysteine (C169) to valine abolishes the slow decay and subconductance level, and single-channel recordings from channels formed by tandem tetramers containing one to three C169V mutant subunits indicate that Tl(+) must interact with at least three C169 residues to induce these effects. However, the C169V mutation does not alter the single-channel closing kinetics of Tl(+) current. These results suggest that Tl(+) ions change the conformation of the ion conduction pathway during permeation and alter gating by two distinct mechanisms. First, they interact with the thiolate groups of C169 lining the cavity to induce conformational changes of the ion passageway, and thereby produce a slow decay of single-channel current and a dominant subconductance state. Second, they interact more strongly than K(+) with the main chain carbonyl oxygens lining the selectivity filter to destabilize the open state of the channel and, thus, alter the open/close kinetics of gating. In addition to altering gating, Tl(+) greatly diminishes Ba(2+) block. The unblocking rate of Ba(2+) is increased by >22-fold when the external permeant ion is switched from K(+) to Tl(+) regardless of the direction of Ba(2+) exit. This effect cannot be explained solely by ion-ion interactions, but is consistent with the notion that Tl(+) induces conformational changes in the selectivity filter.  相似文献   

7.
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K(+)-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K(+) concentrations ([K(+)]o). We found that Kir4.1 is regulated by K(+)o. Increased [K(+)]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K(+) from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K(+)o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs(+) and Ba(2+) substitute for K(+) and prevent deactivation of the channel in the absence of K(+)o. Cs(+) blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb(+) and NH4(+) permeate Kir4.1, only Rb(+) is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel's sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4(+) to permeate the channel without inducing these changes.  相似文献   

8.
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera   总被引:9,自引:0,他引:9       下载免费PDF全文
The Kir3.1 K(+) channel participates in heart rate control and neuronal excitability through G-protein and lipid signaling pathways. Expression in Escherichia coli has been achieved by replacing three fourths of the transmembrane pore with the pore of a prokaryotic Kir channel, leaving the cytoplasmic pore and membrane interfacial regions of Kir3.1 origin. Two structures were determined at 2.2 A. The selectivity filter is identical to the Streptomyces lividans K(+) channel within error of measurement (r.m.s.d.<0.2 A), suggesting that K(+) selectivity requires extreme conservation of three-dimensional structure. Multiple K(+) ions reside within the pore and help to explain voltage-dependent Mg(2+) and polyamine blockade and strong rectification. Two constrictions, at the inner helix bundle and at the apex of the cytoplasmic pore, may function as gates: in one structure the apex is open and in the other, it is closed. Gating of the apex is mediated by rigid-body movements of the cytoplasmic pore subunits. Phosphatidylinositol 4,5-biphosphate-interacting residues suggest a possible mechanism by which the signaling lipid regulates the cytoplasmic pore.  相似文献   

9.
Kir1.1 (ROMK1) is inhibited by hypercapnia andintracellular acidosis with midpoint pH for channel inhibition(pKa) of ~6.7. Another close relative,Kir4.1 (BIR10), is also pH sensitive with much lower pH sensitivity(pKa ~6.0), although it shares a high sequencehomology with Kir1.1. To find the molecular determinants for thedistinct pH sensitivity, we studied the structure-functional relationship using site-directed mutagenesis. AnNH2-terminal residue (Lys-53) was found to be responsiblefor the low pH sensitivity in Kir4.1. Mutation of this lysine to valine(K53V), a residue seen at the same position in Kir1.1, markedlyincreased channel sensitivity to CO2/pH. Reverse mutationon Kir1.1 (V66K) decreased the CO2/pH sensitivities.Interestingly, mutation of these residues to glutamate greatly enhancedthe pH sensitivity in both channels. Other contributors to the distinctpH sensitivity were histidine residues in the COOH terminus, whosenumbers are fewer in Kir4.1 than Kir1.1. Mutation of two of thesehistidine residues in Kir1.1 (H342Q/H354N) reduced CO2/pHsensitivities, whereas the creation of two histidines (S328H/G340H) inKir4.1 increased the CO2/pH sensitivities. Combinedmutations of the lysine and histidine residues in Kir4.1(K53V/S328H/G340H) gave rise to a channel that had CO2/pHsensitivities almost identical to those of the wild-type Kir1.1. Thusthe residues demonstrated in our current studies are likely themolecular basis for the distinct pH sensitivity between Kir1.1 andKir4.1.

  相似文献   

10.
11.
G protein-activated inwardly rectifying potassium channels (Kir3) are widely expressed throughout the brain, and regulation of their activity modifies neuronal excitability and synaptic transmission. In this study, we show that the neurotrophin brain-derived neurotrophic factor (BDNF), through activation of TrkB receptors, strongly inhibited the basal activity of Kir3. This inhibition was subunit dependent as functional homomeric channels of either Kir3.1 or Kir3.4 were significantly inhibited, whereas homomeric channels composed of Kir3.2 were insensitive. The general tyrosine kinase inhibitors genistein, G? 6976, and K252a but not the serine/threonine kinase inhibitor staurosporine blocked the BDNF-induced inhibition of the channel. BDNF was also found to directly stimulate channel phosphorylation because Kir3.1 immunoprecipitated from BDNF-stimulated cells showed enhanced labeling by anti-phosphotyrosine-specific antibodies. The BDNF effect required specific tyrosine residues in the amino terminus of Kir3.1 and Kir3.4 channels. Mutations of either Tyr-12, Tyr-67, or both in Kir3.1 or mutation of either Tyr-32, Tyr-53, or both of Kir3. 4 channels to phenylalanine significantly blocked the BDNF-induced inhibition. The insensitive Kir3.2 was made sensitive to BDNF by adding a tyrosine (D41Y) and a lysine (P32K) upstream to generate a phosphorylation site motif analogous to that present in Kir3.4. These results suggest that neurotrophin activation of TrkB receptors may physiologically control neuronal excitability by direct tyrosine phosphorylation of the Kir3.1 and Kir3.4 subunits of G protein-gated inwardly rectifying potassium channels.  相似文献   

12.
The functionally important effects on the heart of ACh released from vagal nerves are principally mediated by the muscarinic K+ channel. The aim of this study was to determine the abundance and cellular location of the muscarinic K+ channel subunits Kir3.1 and Kir3.4 in different regions of heart. Western blotting showed a very low abundance of Kir3.1 in rat ventricle, although Kir3.1 was undetectable in guinea pig and ferret ventricle. Although immunofluorescence on tissue sections showed no labeling of Kir3.1 in rat, guinea pig, and ferret ventricle and Kir3.4 in rat ventricle, immunofluorescence on single ventricular cells from rat showed labeling in t-tubules of both Kir3.1 and Kir3.4. Kir3.1 was abundant in the atrium of the three species, as shown by Western blotting and immunofluorescence, and Kir3.4 was abundant in the atrium of rat, as shown by immunofluorescence. Immunofluorescence showed Kir3.1 expression in SA node from the three species and Kir3.4 expression in the SA node from rat. The muscarinic K+ channel is activated by ACh via the m2 muscarinic receptor and, in atrium and SA node from ferret, Kir3.1 labeling was co-localized with m2 muscarinic receptor labeling throughout the outer cell membrane.  相似文献   

13.
Protons are involved in gating Kir2.3. To identify the molecular motif in the Kir2.3 channel protein that is responsible for this process, experiments were performed using wild-type and mutated Kir2. 3 and Kir2.1. CO2 and low pHi strongly inhibited wild-type Kir2.3 but not Kir2.1 in whole cell voltage clamp and excised inside-out patches. This CO2/pH sensitivity was completely eliminated in a mutant Kir2.3 in which the N terminus was substituted with that in Kir2.1, whereas a similar replacement of its C terminus had no effect. Site-specific mutations of all titratable residues in the N terminus, however, did not change the CO2/pH sensitivity. Using several chimeras generated systematically in the N terminus, a 10-residue motif near the M1 region was identified in which only three amino acids are different between Kir2.3 and Kir2.1. Mutations of these residues, especially Thr53, dramatically reduced the pH sensitivity of Kir2.3. Introducing these residues or even a single threonine to the corresponding positions of Kir2.1 made the mutant channel pH-sensitive. Thus, a critical motif responsible for gating Kir2.3 by protons was identified in the N terminus, which contained about 10 residues centered by Thr53.  相似文献   

14.
The muscarinic-gated atrial potassium (I(KACh)) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I(KACh) is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this conductance. While Kir3.4 homomultimers evince many properties of I(KACh), the contribution of Kir3.1 to I(KACh) is less well understood. Here, we explored the significance of Kir3.1 using knock-out mice. Kir3.1 knock-out mice were viable and appeared normal. The loss of Kir3.1 did not affect the level of atrial Kir3.4 protein but was correlated with a loss of carbachol-induced current in atrial myocytes. Low level channel activity resembling recombinant Kir3.4 homomultimers was observed in 40% of the cell-attached patches from Kir3.1 knock-out myocytes. Channel activity typically ran down quickly, however, and was not recovered in the inside-out configuration despite the addition of GTP and ATP to the bath. Both Kir3.1 knock-out and Kir3.4 knock-out mice exhibited mild resting tachycardias and blunted responses to pharmacological manipulation intended to activate I(KACh). We conclude that Kir3.1 confers properties to I(KACh) that enhance channel activity and that Kir3.4 homomultimers do not contribute significantly to the muscarinic-gated potassium current.  相似文献   

15.
Potassium (K+) channels are highly selective for K+ ions but their unitary conductances are quite divergent. Although Kir6.1 and Kir6.2 are highly homologous and both form functional K+ channels with sulfonylurea receptors, their unitary conductances measured with 150 mM extracellular K+ are approximately 35 and 80 pS, respectively. We found that a chain of three amino acid residues N123-V124-R125 of Kir6.1 and S113-I114-H115 of Kir6.2 in the M1-H5 extracellular link and single residues M148 of Kir6.1 and V138 of Kir6.2 in the H5-M2 link accounted for the difference. By using a 3D structure model of Kir6.2, we were able to recognize two independent plausible mechanisms involved in the determination of single channel conductance of the Kir6.0 subunits: (i) steric effects at Kir6.2V138 or Kir6.1M148 in the H5-M2 link influence directly the diffusion of K+ ions; and (ii) structural constraints between Kir6.2S113 or Kir6. 1N123 in the M1-H5 link and Kir6.2R136 or Kir6.1R146 near the H5 region control the conformation of the permeation pathway. These mechanisms represent a novel and possibly general aspect of the control of ion channel permeability.  相似文献   

16.
Inward rectifier potassium (Kir) channels regulate cell excitability and transport K+ ions across membranes. Homotetrameric models of three mammalian Kir channels (Kir1.1, Kir3.1, and Kir6.2) have been generated, using the KirBac3.1 transmembrane and rat Kir3.1 intracellular domain structures as templates. All three models have been explored by 10 ns molecular dynamics simulations in phospholipid bilayers. Analysis of the initial structures revealed conservation of potential lipid interaction residues (Trp/Tyr and Arg/Lys side chains near the lipid headgroup-water interfaces). Examination of the intracellular domains revealed key structural differences between Kir1.1 and Kir6.2 which may explain the difference in channel inhibition by ATP. The behavior of all three models in the MD simulations revealed that they have conformational stability similar to that seen for comparable simulations of, for example, structures derived from cryoelectron microscopy data. Local distortions of the selectivity filter were seen during the simulations, as observed in previous simulations of KirBac and in simulations and structures of KcsA. These may be related to filter gating of the channel. The intracellular hydrophobic gate does not undergo any substantial changes during the simulations and thus remains functionally closed. Analysis of lipid-protein interactions of the Kir models emphasizes the key role of the M0 (or "slide") helix which lies approximately parallel to the bilayer-water interface and forms a link between the transmembrane and intracellular domains of the channel.  相似文献   

17.
18.
Classical electrophysiology and contemporary crystallography suggest that the activation gate of voltage-dependent channels is on the intracellular side, but a more extracellular "pore gate" has also been proposed. We have used the voltage dependence of block by extracellular Y(3+) as a tool to locate the activation gate of the alpha1G (Ca(V)3.1) T-type calcium channel. Y(3+) block exhibited no clear voltage dependence from -40 to +40 mV (50% block at 25 nM), but block was relieved rapidly by stronger depolarization. Reblock of the open channel, reflected in accelerated tail currents, was fast and concentration dependent. Closed channels were also blocked by Y(3+) at a concentration-dependent rate, only eightfold slower than open-channel block. When extracellular Ca(2+) was replaced with Ba(2+), the rate of open block by Y(3+) was unaffected, but closed block was threefold faster than in Ca(2+), suggesting the slower closed-block rate reflects ion-ion interactions in the pore rather than an extracellularly located gate. Since an extracellular blocker can rapidly enter the closed pore, the primary activation gate must be on the intracellular side of the selectivity filter.  相似文献   

19.
Tanemoto M  Fujita A  Higashi K  Kurachi Y 《Neuron》2002,34(3):387-397
Homomeric assembly of Kir5.1, an inward-rectifying K+ channel subunit, is believed to be nonfunctional, although the subunit exists abundantly in the brain. We show that HEK293T cells cotransfected with Kir5.1 and PSD-95 exhibit a Ba(2+)-sensitive inward-rectifying K+ current. Kir5.1 coexpressed with PSD-95 located on the plasma membrane in a clustered manner, while the Kir5.1 subunit expressed alone distributed mostly in cytoplasm, probably due to rapid internalization. The binding of Kir5.1 with PSD-95 was prevented by protein kinase A (PKA)-mediated phosphorylation of its carboxyl terminus. The currents flowing through Kir5.1/PSD-95 were suppressed promptly and reversibly by PKA activation. Because the Kir5.1/PSD-95 complex was detected in the brain, this functional brain K+ channel is potentially a novel physiological target of PKA-mediated signaling.  相似文献   

20.
Using the recently unveiled crystal structure, and molecular and Brownian dynamics simulations, we elucidate several conductance properties of the inwardly rectifying potassium channel, Kir3.2, which is implicated in cardiac and neurological disorders. We show that the pore is closed by a hydrophobic gating mechanism similar to that observed in Kv1.2. Once open, potassium ions move into, but not out of, the cell. The asymmetrical current–voltage relationship arises from the lack of negatively charged residues at the narrow intracellular mouth of the channel. When four phenylalanine residues guarding the intracellular gate are mutated to glutamate residues, the channel no longer shows inward rectification. Inward rectification is restored in the mutant Kir3.2 when it becomes blocked by intracellular Mg2 +. Tertiapin, a polypeptide toxin isolated from the honey bee, is known to block several subtypes of the inwardly rectifying channels with differing affinities. We identify critical residues in the toxin and Kir3.2 for the formation of the stable complex. A lysine residue of tertiapin protrudes into the selectivity filter of Kir3.2, while two other basic residues of the toxin form hydrogen bonds with acidic residues located just outside the channel entrance. The depth of the potential of mean force encountered by tertiapin is ? 16.1 kT, thus indicating that the channel will be half-blocked by 0.4 μM of the toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号