共查询到20条相似文献,搜索用时 0 毫秒
1.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting. 相似文献
2.
Shoot growth phenology was compared for the saplings of evergreen and deciduous woody species sharing the same microsite.
Growth initiation occurred earlier in evergreens (among co-stratal species) while deciduous species completed their growth
earlier. Shoot growth rate was significantly greater (P<0.01) for deciduous trees than evergreen trees. The amount of shoot elongations and shoot diameter was also significantly
greater (P<0.01) for deciduous trees than evergreens. On the other hand, among shrubs the amount of shoot elongation and shoot diameter
was greater for evergreens but the rate of elongation and diameter was more or less similar for both. The duration of shoot
elongation and shoot diameter was significantly longer in evergreens than the deciduous species. Leaf packing (number of leaves
per shoot) was significantly more dense in evergreen trees (P<0.01) than in deciduous tree species. Leaf packing was more dense in evergreen than deciduous shrubs but the difference was
not significant. Leaf area (per individual leaf) at full expansion was significantly greater (P<0.01) in deciduous species. Leaf dry mass and specific leaf mass in the initial stage was significantly greater for evergreen
species than for deciduous species. The number of buds/10 cm of shoot was higher in evergreens. However, the per cent mortality
was also higher in them. 相似文献
3.
Leaf growth patterns were investigated in 11 evergreen (with leaf life-spans of just more than 1 year) and 15 deciduous species,
occurring along an elevational gradient of 600–2200 m elevation in the Central Himalaya. Records were made of the leaf initiation
period, leaf population dynamics, leaf expansion, leaf mass changes, leaf longevity and related parameters. Species of both
groups produced leaves at similar rates during March to April, the driest period of the year. Species of both groups had approximately
fully developed foliage during the warm, wet period (mid-June to mid-September) of the monsoon. However, significant differences
were found at group level in other characters: shoot length (19.5 cm per shoot for deciduous and 11.7 cm for evergreen species);
leaf population per 10 cm shoot length (4.7 vs 15.0); leaf area (107.9 vs 41.4 cm2/ leaf); specific leaf mass (106.9 vs 191.3 g/m2); and leaf mass loss after the monsoon period, being rapid and higher (31.6%) in deciduous species and slow and limited in
the evergreens (26.2%). However, species of the two groups showed considerable overlaps in the values of above characters.
The evergreen species of the Central Himalaya resembled the deciduous species of the region more than the multi-year leaves
of clearly evergreen species. The evergreens bear leaves throughout the year, but like deciduous species bear the cost of
annual replacement of old leaves by new leaves. They seem to outcompete deciduous species by producing annually a greater
mass of leaves of low-carbon cost (per unit leaf mass), which is capable of conducting photosynthesis all year round. A situation
of less marked contrast between favourable and nonfavourable periods, with respect to temperature, seems to favour the leaf
characters of the evergreens. 相似文献
4.
M. Piwczyński A. Ponikierska R. Puchałka J.M. Corral 《Plant biology (Stuttgart, Germany)》2013,15(3):522-530
We investigated the anatomical expression of leaf traits in hybrids between evergreen Vaccinium vitis‐idaea and deciduous V. myrtillus. We compared parents from four populations with their respective F1 hybrids and tested whether (i) transgression can be the source of novel anatomical traits in hybrids; (ii) expression of transgressive traits is more probable for traits with similar values in parents and intermediate for more distinct values, as predicted by theory; and (iii) independent origin of hybrids leads to identical trait expression profiles among populations. We found that anatomical leaf traits can be divided into four categories based on their similarity to parents: intermediate, parental‐like, transgressive and non‐significant. Contrary to the common view, parental‐like trait values were equally important in shaping the hybrid profile, as were intermediate traits. Transgression was revealed in 17/144 cases and concerned mainly cell and tissue sizes. As predicted by theory, we observed transgressive segregation more often when there was little phenotypic divergence, but intermediate values when parental traits were differentiated. It is likely that cell and tissue sizes are phylogenetically more conserved due to stabilising selection, whereas traits such as leaf thickness and volume fraction of the intercellular spaces, showing a consistent intermediate pattern across populations, are more susceptible to directional selection. Hybrid populations showed little similarity in expression profile, with only three traits identically expressed across all populations. Thus local adaptation of parental species and specific genetic background may be of importance. 相似文献
5.
Plant phenological events are influenced by climate factors such as temperature and rainfall. To evaluate phenological responses to water availability in a Spring Heath-Pine wood (Erico-Pinetum typicum), the focus of this study was to determine intra-annual dynamics of apical and lateral growth of co-occurring early successional Larix decidua and Pinus sylvestris and late successional Picea abies exposed to drought. The effect of reduced plant water availability on growth phenology was investigated by conducting a rainfall exclusion experiment. Timing of key phenological dates (onset, maximum rate, end, duration) of growth processes were compared among species at the rain-sheltered and control plot during 2011 and 2012. Shoot and needle elongation were monitored on lateral branches in the canopy at c. 16 m height and radial growth was recorded by automatic dendrometers at c. 1.3 m height of >120 yr old trees. Different sequences in aboveground growth phenology were detected among the three species under the same growing conditions. While onset of radial growth in April through early May was considerably preceded by onset of needle growth in Larix decidua (5–6 weeks) and shoot growth in Pinus sylvestris (c. 3 weeks), it occurred quite simultaneously with onset of shoot growth in Picea abies. Low water availability had a minor impact on onset of aboveground growth, which is related to utilization of stored water, but caused premature cessation of aboveground growth. At the control plot mean growing season length was 130 days in Pinus sylvestris, 95 days in Larix decidua and 73 days in Picea abies, supporting the hypothesis that early successional species are resource expenders, while late successional species are more efficient in utilizing resources and develop safer life strategies. High synchronicity found in culmination of radial growth in late spring (mid-May through early June) prior to occurrence of more favourable environmental conditions in summer might indicate sink competition for carbohydrates to belowground organs. This is supported by completion of apical growth in mid June in all species, except for needle growth of Pinus sylvestris which lasted until early August. Phenological observations of conifers exposed to drought revealed that tree water status early during the growing season determines total annual aboveground growth and, besides temperature, species-specific endogenous and/or environmental factors (most likely photoperiod and/or different threshold temperatures) are involved in controlling apical and lateral growth resumption after winter dormancy. 相似文献
6.
Leaf and soil nutrient levels interact with and may each influence the other. We hypothesize that to the extent soil fertility influences the nutritional state of trees, soil fertility should correlate with summer leaf nutrient levels, whereas to the extent that trees influence soil nutrient levels, the quality of leaf litterfall should correlate with soil fertility. We examined these correlations for five sympatric oak species (genus Quercus) in central coastal California. Soil fertility, including both nitrogen and especially phosphorus, correlated significantly with summer leaf nutrient levels. In contrast, phosphorus, but not nitrogen, in the leaf litterfall correlated positively with soil nutrients. These results suggest that soil nitrogen and phosphorus influence tree nutrient levels and that leaf phosphorus, but not leaf nitrogen, influence soil fertility under the trees. Feedback between the soil and the tree for phosphorus, but not nitrogen, is apparently significant and caused by species-specific differences in leaf quality and not by litterfall quality differences within a species. We also compared functional differences between the evergreen and deciduous oak species at our study site. There were no differences in soil nitrogen and only small differences for soil phosphorus between the phenological types. Differences in leaf nutrient concentration were much more pronounced, with the evergreen species having substantially lower levels of both nitrogen and phosphorus. Evergreen species conserved more phosphorus, but not more nitrogen, than the deciduous species, but there was no consistent relationship between retranslocation and either soil nitrogen or phosphorus. These results do not support the hypothesis that evergreenness is an adaptation to low soil fertility in this system. 相似文献
7.
Rien Aerts 《Oecologia》1990,84(3):391-397
Summary The nutrient (N, P) use efficiency (NUE: g g–1 nutrient), measured for the entire plant, of field populations of the evergreen shrubs Erica tetralix (in a wet heathland) and Calluna vulgaris (in a dry heathland) and the deciduous grass Molinia caerulea (both in a wet and a dry heathland) was compared. Erica and Calluna are crowded out by Molinia when nutrient availability increases. NUE was measured as the product of the mean residence time of a unit of nutrient in the population (MRT: yr) and nutrient productivity (A: annual productivity per unit of nutrient in the population, g g–1 nutrient yr–1. It was hypothesized that 1) in low-nutrient habitats selection is on features leading to a high MRT, whereas in high-nutrient habitats selection is on features leading to a high A; and that 2) due to evolutionary trade-offs plants cannot combine genotypically determined features which maximize both components of NUE.Both total productivity and litter production of the Molinia populations exceeded that of both evergreens about three-fold. Nitrogen and phosphorus resorption from senescing shoots was much lower in the evergreens compared with Molinia. In a split-root experiment no nutrient resorption from senescing roots was observed. Nutrient concentrations in the litter were equal for all species, except for litter P-concentration of Molinia at the wet site. Both Erica and Calluna had a long mean residence time of both nitrogen and phosphorus and a low nitrogen and phosphorus productivity. The Molinia populations showed a shorter mean residence time of N and P and a higher N- and P-productivity. These patterns resulted in an equal nitrogen use efficiency and an almost equal phosphorus use efficiency for the species under study. However, when only aboveground NUE was considered the Molinia populations had a much higher NUE than the evergreens.The results are consistent with the hypotheses. Thus, the low potential growth rate of species from low-nutrient habitats is probably the consequence of their nutrient conserving strategy rather than a feature on which direct selection takes place in these habitats. 相似文献
8.
The goal of this study is to clarify how different aspects of plant function are coordinated developmentally for species of ring-porous versus diffuse-porous deciduous trees, comparing the timing of leaf phenology and vessel formation in twigs and stems from an ecophysiological viewpoint. Cylindrical stem cores and twigs were collected at intervals from early spring through summer from five ring-porous and five diffuse-porous species in a cool temperate forest, and leaf and vessel formation were observed simultaneously. We found that the first-formed vessels of the year were lignified in twigs around the time of leaf appearance and at or before full leaf expansion of each tree in both groups of species with flush-leaves. Vessels in stems were lignified 2 weeks before to 4 weeks after leaf appearance and before or around full leaf expansion of the tree in ring-porous species. This was significantly earlier than in diffuse-porous species, in which stem vessel lignification was 2–8 weeks after leaf appearance and at or after full leaf expansion of the tree. The timing of vessel formation in twigs compared to stems was significantly earlier in ring-porous species than in diffuse-porous species. Lignification of vessels in stems occurred within 2 weeks of lignification in the twigs of ring-porous species and 2–8 weeks after lignification in twigs of diffuse-porous species. These results indicate the order and time-lag of leaf and vessel formation. Ring-porous species showed intensive leaf/vessel production, whereas diffuse-porous species showed less intensive leaf/vessel production. 相似文献
9.
A. E. E. van Ommen Kloeke J. C. Douma J. C. Ordoñez P. B. Reich P. M. van Bodegom 《Global Ecology and Biogeography》2012,21(2):224-235
Aim Species with deciduous and evergreen leaf habits typically differ in leaf life span (LLS). Yet quantification of the response of LLS, within each habit, to key environmental conditions is surprisingly lacking. The aim of this study is to quantify LLS strategies of the two leaf habits under varying temperature, moisture and nutrient conditions, using a global database. We hypothesize that deciduous LLS reflects the length of the growing season, avoiding unfavourable conditions regardless of the cause. Evergreen species adjust to unfavourable periods and amortize lower net carbon gains over several growing seasons, with increasing LLS associated with increasingly short favourable versus unfavourable season lengths. Location Global. Methods Data on LLS and environmental variables were compiled from global datasets for 189 deciduous and 506 evergreen species across 83 study locations. Individual and combined effects of measures of seasonality of temperature, water and nutrient availability on length of the growing season and on LLS were quantified using linear mixed models. The best models for predicting LLS were obtained using Akaike's information criterion (AIC) and ΔAIC. Results The LLS of deciduous and evergreen species showed opposite responses to changes in environmental conditions. Under unfavourable conditions, deciduous LLS decreases while evergreen LLS increases. A measure of temperature alone was the best predictor of the growing season. The LLS of deciduous species was independent of environmental conditions after expressing LLS in relation to the number of growing seasons. Evergreen species, on the other hand, adjusted to unfavourable conditions by increasing LLS up to four growing seasons. Contrary to expectations, variation in LLS was best explained solely by temperature, instead of by combined measures of temperature, moisture and nutrient availability. Shifts in the photosynthesis to respiration balance might provide a physiological explanation. Main conclusions Temperature, and not drought or nutrient availability, is the primary driver of contrasting responses of LLS for different leaf habit types. 相似文献
10.
Differences in growth patterns between a deciduous species, Nothofagus pumilio, and an evergreen species, Nothofagus betuloides, were analyzed in Lago del Desierto, southern Patagonia, Argentina (49°01′ S – 72°52′ W). The relationships between the growth rate of these two species and variations in temperature, precipitation, and the Southern Annular Mode (SAM) were also evaluated. We processed and analyzed 54 samples of N. pumilio and 48 of N. betuloides and developed two tree-ring width chronologies covering the periods of 1754-2014 and 1650-2014, respectively. The results from N. betuloides are especially important due to the small number of studies about this species in the area. Results indicate similarities between the tree-ring growth patterns of the two species. However, N. betuloides grew with a slower rate and had shorter periods of growth below average. We suggest that the particular growth pattern of N. betuloides is determined by its higher tolerance to stress situations and evergreen physiological characteristics. Significant correlations were observed between N. pumilio tree-ring growth and temperature from August-October of the previous year, and with the SAM index from December-January of the current year. N. pumilio did not show significant correlations with precipitation. Significant correlations were found between N. betuloides growth and precipitation from December-January of the previous year. As evergreen species have a more conservative response to temperature changes, N. betuloides growth was not significantly affected by temperature or by the SAM index. These results are encouraging and further studies could help improve our understanding of the relationship between the environment and species with different seasonality of foliage growth. Our study provides the first chronologies of N. pumilio and N. betuloides in the area and increases knowledge about the relationships between tree-ring growth and climate. 相似文献
11.
Leaf flushing phenology and herbivory in a tropical dry deciduous forest,southern India 总被引:3,自引:0,他引:3
Patterns of leaf-flushing phenology of trees in relation to insect herbivore damage were studied at two sites in a seasonal tropical dry forest in Mudumalai, southern India, from April 1988 to August 1990. At both sites the trees began to flush leaves during the dry season, reaching a peak leaf-flushing phase before the onset of rains. Herbivorous insects emerged with the rains and attained a peak biomass during the wet months. Trees that flushed leaves later in the season suffered significantly higher damage by insects compared to those that flushed early or in synchrony during the peak flushing phase. Species whose leaves were endowed with physical defenses such as waxes suffered less damage than those not possessing such defenses. There was a positive association between the abundance of a species and leaf damage levels. These observations indicate that herbivory may have played a major role in moulding leaf flushing phenology in trees of the seasonal tropics. 相似文献
12.
Relative growth rate in phylogenetically related deciduous and evergreen woody species 总被引:10,自引:0,他引:10
Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR2SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species. 相似文献
13.
Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species 总被引:20,自引:0,他引:20
Rapidly induced responses can alter host plant suitability for insect growth and survival. The effects of defoliation on the suitability of potted 5-year-old red pine, Pinus resinosa Ait., for the sawfly Neodiprion sertifer (Hymenoptera: Diprionidae), were measured in two experiments. In the first, overall larval growth rate increased on seedlings within 8 days of low (<15%) defoliation. Suitability varied among larval age groups: defoliation increased the performance of older larvae, but not that of young larvae. In the second experiment, larval survival and weight varied non-linearly with defoliation intensity 8 weeks after treatment. Similar responses were observed following artificial and natural defoliation, and on early- and late-season seedlings. These results suggest that some evergreen conifers can respond rapidly to defoliation injury, and that herbivores may simultaneously acclimate to the induced response as they develop. The relative importance of induced response rates to plant-insect interactions is discussed. 相似文献
14.
天童常绿阔叶林中常绿与落叶物种的物种多度分布格局 总被引:1,自引:0,他引:1
物种多度分布是对群落内不同物种多度情况的数量描述, 作为理解群落性质的基石, 其形成机制受到广泛关注。常绿与落叶物种是两类有着不同物候性状与生长策略的物种集合, 它们普遍共存于常绿阔叶林中。在天童20 ha常绿阔叶林动态监测样地内, 虽然常绿物种在物种多度和胸高断面积等指标上占有绝对优势, 但其在物种丰富度上却不及落叶物种。分析两者在常绿阔叶林中的物种多度分布特征, 能够为理解常绿阔叶林内物种多样性的维持机制提供一个全新的视角。为此, 我们基于天童样地的植被调查数据, 一方面利用累积经验分布函数对两类生活型植物的物种多度分布进行描述, 使用Kolmogorov-Smirnov检验(K-S检验)判断其差异性; 另一方面, 采用纯统计模型、生态位模型和中性理论模型对二者的物种多度分布曲线进行拟合, 并基于K-S检验的结果以及AIC值进行最优模型的筛选。结果显示: (1)常绿与落叶物种的物种多度分布曲线间并无显著差异。(2)在选用的3类模型中, 中性理论模型对于两类物种多度分布曲线的拟合效果都最好, 而生态位模型的拟合效果则一般。从上述结果可以看出, 尽管常绿与落叶物种在物种数量和多度等方面均存在差异, 但它们却有着近似的物种多度分布格局以及相近的多样性维持机制。然而, 鉴于模型拟合的结果只能作为理解群落多样性构建机制的必要非充分条件, 故而只能初步判定中性过程对于常绿与落叶物种的物种多样性格局影响更大, 却不能排除或衡量诸如生态位分化等其他过程在两类生活型多样性格局形成中的贡献。 相似文献
15.
Plant and Soil - Our understanding of the determinants of leaf litter decomposition is lacking for mixed evergreen and deciduous broad-leaved forests compared with tropical and temperate forests.... 相似文献
16.
Key message
Using an extensive dataset for 39 subtropical broadleaved tree species, we found traits of the leaf economics spectrum to be linked to mean stomatal conductance but not to stomatal regulation.Abstract
The aim of our study was to establish links between stomatal control and functional leaf traits. We hypothesized that mean and maximum stomatal conductance (g s) varies with the traits described by the leaf economics spectrum, such as specific leaf area and leaf dry matter content, and that high g s values correspond to species with tender leaves and high photosynthetic capacity. In addition, we hypothesized that species with leaves of low stomata density have more limited stomatal closure than those with high stomata density. In order to account for confounding site condition effects, we made use of a common garden situation in which 39 deciduous and evergreen species of the same age were grown in a biodiversity ecosystem functioning experiment in Jiangxi (China). Daily courses of g s were measured with porometry, and the species-specific g s~vpd relationships were modeled. Our results show that mean stomatal conductance can be predicted from leaf traits that represent the leaf economics spectrum, with a positive relationship being related to leaf nitrogen content and a negative relationship with the leaf carbon: nitrogen ratio. In contrast, parameters of stomatal control were related to traits unassociated with the leaf economics spectrum. The maximum of the conductance~vpd curve was positively related to leaf carbon content and vein length. The vpd at the point of inflection of the conductance~vpd curve was lower for species with higher stomata density and higher for species with a high leaf carbon content. Overall, stomata size and density as well as vein length were more effective at explaining stomatal regulation than traits used in the leaf economics spectrum. 相似文献17.
Saihanna Saihanna Tomoe Tanaka Yu Okamura Buntarou Kusumoto Takayuki Shiono Toshihide Hirao Yasuhiro Kubota Masashi Murakami 《Ecological Research》2018,33(5):1011-1017
The classical “low latitude–high defense” hypothesis is seldom supported by empirical evidence. In this context, we tested latitudinal patterns in the leaf defense traits of deciduous broadleaved (DB) and evergreen broadleaved (EGB) tree species, which are expected to affect herbivore diversity. We examined the co-occurrence of leaf defense traits (tannin and phenol content, leaf mechanical strength, leaf dry matter content, leaf mass per area, and leaf thickness) in 741 broadleaved tree species and their correlations with species geographical range in East Asian island flora. We discovered contrasting latitudinal defense strategy gradients in DB and EGB tree species. DB species employed chemical defenses (increasing tannin and phenol content) at higher latitudes and physical defenses (softer and thinner leaves) at lower latitudes, whereas EGB tree species exhibited opposite latitudinal defense patterns. The “low latitude high defense” hypothesis included a paradoxical aspect in chemical and physical defense traits across broadleaved tree species. To reconcile paradoxical defense strategies along the latitudinal gradient, we conclude that interactive correlations among leaf traits are controlled by leaf longevity, which differs between DB and EGB tree species. 相似文献
18.
F. Martínez Y. O. Lazo J. M. Fernández-Galiano & J. Merino 《Plant, cell & environment》2002,25(10):1271-1278
Root construction and maintenance costs were estimated in four evergreen and three deciduous Quercus species that are typical in the landscape of southern Spain. The cost quantification was based on analysis of the growth–respiration ratio. Values observed for both construction cost (ranging from 1·17 to 1·29 g glucose g?1 dry weight) and maintenance cost (ranging from 6·22 to 11·71 mg glucose g?1 dry weight d?1) were generally lower than those reported in other studies. The results showed non‐significant differences between deciduous and evergreen species. The lack of significant differences between species appeared to be due to the homogeneity of growth conditions. Hydroponic culture, with unrestricted nutrient and water supply, would lead to low tissue carbon content and low respiration rates, leading to the low costs observed. Furthermore, the fact that root organs are clearly importers of organic molecules inevitably entails some underestimation of the respiration associated with growth and, to a lesser extent, with maintenance respiration. This leads in turn to underestimation of the corresponding construction and maintenance costs. All this raises doubts as to the suitability of this method for studying root systems. 相似文献
19.
20.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants. 相似文献