首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Snakes elicit a higher level of fear than other vertebrate animals, yet specific cues responsible for fear of snakes are equivocal. The bright colouration hypothesis suggests that fear responses to snakes are triggered by aposematic colouration, not by snakes per se. We investigated the role of aposematic colouration in fear of snakes in a sample of 10- to 15-year-old Slovak children. Both aposematically and cryptically coloured snakes presented as both colour and black-and-white pictures received higher perceived fear scores than other vertebrates. This suggests that aposematic colouration does not play a crucial role in eliciting fear of snakes. Our results support the snake detection theory suggesting that the human visual system has been influenced by long coexistence between predatory snakes and mammals. As a result, humans have evolved an attentional bias ultimately focused on the correct and rapid detection of these threats.  相似文献   

2.
Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower (‘shade position’) and upper thirds of the crowns (‘sun position’) of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (Klb), petioles (KP) and branches (i.e. leafless stem; KB) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200–250 µmol m?2 s?1 using white, blue or red light. Klb depended significantly on both light quality and canopy position (P < 0.001), KB on canopy position (P < 0.001) and exposure time (P = 0.014), and none of the three factors had effect on KP. The highest values of Klb were recorded under the blue light (3.63 and 3.13 × 10?4 kg m?2 MPa?1 s?1 for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46 × 10?4 kg m?2 MPa?1 s?1, respectively) and lowest values under red light (2.83 and 2.02 × 10?4 kg m?2 MPa?1 s?1, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, Klb may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of Klb within and under canopies, and its impacts on gas exchange.  相似文献   

3.
M. F. Cotrufo  P. Ineson 《Oecologia》1996,106(4):525-530
The effect of elevated atmospheric CO2 and nutrient supply on elemental composition and decomposition rates of tree leaf litter was studied using litters derived from birch (Betula pendula Roth.) plants grown under two levels of atmospheric CO2 (ambient and ambient +250 ppm) and two nutrient regimes in solar domes. CO2 and nutrient treatments affected the chemical composition of leaves, both independently and interactively. The elevated CO2 and unfertilized soil regime significantly enhanced lignin/N and C/N ratios of birch leaves. Decomposition was studied using field litter-bags, and marked differences were observed in the decomposition rates of litters derived from the two treatments, with the highest weight remaining being associated with litter derived from the enhanced CO2 and unfertilized regime. Highly significant correlations were shown between birch litter decomposition rates and lignin/N and C/N ratios. It can be concluded, from this study, that at levels of atmospheric CO2 predicted for the middle of the next century a deterioration of litter quality will result in decreased decomposition rates, leading to reduction of nutrient mineralization and increased C storage in forest ecosystems. However, such conclusions are difficult to generalize, since tree responses to elevated CO2 depend on soil nutritional status.  相似文献   

4.
In order to explore ontogenetic variation in leaf-level physiological traits of Betula pendula trees, we measured changes in mass- (A mass) and area-based (A area) net photosynthesis under light-saturated conditions, mass- (RSmass) and area-based (RSarea) leaf respiration, relative growth rate, leaf mass per area (LMA), total nonstructural carbohydrates (TNC), and macro- and micronutrient concentrations. Expanding leaves maintained high rates of A area, but due to high growth respiration rates, net CO2 fixation occurred only at irradiances >200 μmol photons m–2 s–1. We found that full structural leaf development is not a necessary prerequisite for maintaining positive CO2 balance in young birch leaves. Maximum rates of A area were realized in late June and early July, whereas the highest values of A mass occurred in May and steadily declined thereafter. The maintenance respiration rate averaged ≈8 nmol CO2 g–1 s–1, whereas growth respiration varied between 0 and 65 nmol CO2 g–1 s–1. After reaching its lowest point in mid-June, leaf respiration increased gradually until the end of the growing season. Mass and area-based dark respiration were significantly positively correlated with LMA at stages of leaf maturity, and senescence. Concentrations of P and K decreased during leaf development and stabilized or increased during maturity, and concentrations of immobile elements such as Ca, Mn and B increased throughout the growing season. Identification of interrelations between leaf development, CO2 exchange, TNC and leaf nutrients allowed us to define factors related to ontogenetic variation in leaf-level physiological traits and can be helpful in establishing periods appropriate for sampling birch leaves for diagnostic purposes such as assessment of plant and site productivity or effects of biotic or abiotic factors. Received: 29 December 1998 / Accepted: 26 July 1999  相似文献   

5.
Variation in leaf hydraulic conductance (K(L)) and distribution of resistance in response to light intensity and duration were examined in shoots of silver birch (Betula pendula Roth). K(L) was determined on detached shoots using the evaporative flux method (transpiration was measured with a porometer and water potential drop with a pressure chamber). Although K(L) depended on light duration per se, its dynamics was largely determined by leaf temperature (T(L)). Both upper-crown leaves and branches developed in well-illuminated environment exhibited higher hydraulic efficiency compared with the lower crown, accounting for vertical trends of apparent soil-to-leaf hydraulic conductance in canopy of silver birch revealed in our previous studies. K(L) varied significantly with light intensity, the highest values for both shade and sun foliage were recorded at photosynthetic photon flux density of 330 micromol m(-2) s(-1). Light responses of K(L) were associated evidently with an irradiance-mediated effect on extravascular tissues involving regulation of cell membrane aquaporins. Effects of irradiance on K(L) resulted in changes of Psi(L), bringing about considerable alteration in partitioning of the resistance between leaves and branch (leafless shoot stem): the contribution of leaves to the shoot total resistance decreased from 94% at -1.0 MPa to 75% at -0.2 MPa. Treatment with HgCl2 decreased hydraulic conductance of both leaves and branches, implying that condition of bordered pit membranes or shoot living tissues may be involved in responses of xylem conductance to Hg2+.  相似文献   

6.
The global modelling of photosynthesis is based on exact knowledge of the leaf photosynthetic machinery. The capacities of partial reactions of leaf photosynthesis develop at different rates, but it is not clear how the development of photoreactions and the Calvin cycle are co-ordinated. We investigated the development of foliar photosynthesis in the temperate deciduous tree Betula pendula Roth. using a unique integrated optical/gas exchange methodology that allows simultaneous estimation of photosystem I and II (PS I and PS II) densities per leaf area, interphotosystem electron transport activities, and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic properties. We combined these measurements with in vitro determinations of Rubisco, soluble protein and chlorophyll contents. We observed a strong increase in leaf photosynthetic capacity in developing leaves per leaf area, as well as per dry mass, that was paralleled by accumulation of leaf Rubisco. Enhanced mesophyll conductance was the outcome of increased carboxylation capacity and increased CO(2) diffusion conductance. However, Rubisco was only partly activated in the leaves, according to in vivo measurements of Rubisco kinetics. The amount of active Rubisco increased in proportion with development of PS I, probably through a direct link between Rubisco activase and PS I electron transport. Since the kinetics for post-illumination P700 re-reduction did not change, the synthesis of cytochrome b(6)f complex was also proportional to PS I. The synthesis of PS II began later and continued for several days after reaching the full PS I activity, but leaf chlorophyll was shared equally between the photosystems. Due to this, the antenna of PS II was very large and not optimally organized, leading to greater losses of excitation and lower quantum yields in young leaves. We conclude that co-ordinated development of leaf photosynthesis is regulated at the level of PS I with subordinated changes in PS II content and Rubisco activation.  相似文献   

7.
Esmeijer-Liu  A. J.  Aerts  R.  Kürschner  W. M.  Bobbink  R.  Lotter  A. F.  Verhoeven  J. T. A. 《Plant and Soil》2009,318(1-2):311-325

Deep rooting has been identified as strategy for desiccation avoidance in natural vegetation as well as in crops like rice and sorghum. The objectives of this study were to determine root morphology and water uptake of four inbred lines of tropical maize (Zea mays L.) differing in their adaptation to drought. The specific questions were i) if drought tolerance was related to the vertical distribution of the roots, ii) whether root distribution was adaptive or constitutive, and iii) whether it affected water extraction, water status, and water use efficiency (WUE) of the plant. In the main experiment, seedlings were grown to the V5 stage in growth columns (0.80 m high) under well-watered (WW) and water-stressed (WS) conditions. The depth above which 95 % of all roots were located (D95) was used to estimate rooting depth. It was generally greater for CML444 and Ac7729/TZSRW (P2) compared to SC-Malawi and Ac7643 (P1). The latter had more lateral roots, mainly in the upper part of the soil column. The increase in D95 was accompanied by increases in transpiration, shoot dry weight, stomatal conductance and relative water content without adverse effects on the WUE. Differences in the morphology were confirmed in the V8 stage in large boxes: CML444 with thicker (0.14 mm) and longer (0.32 m) crown roots compared to SC-Malawi. Deep rooting, drought sensitive P2 showed markedly reduced WUE, likely due to an inefficient photosynthesis. The data suggest that a combination of high WUE and sufficient water acquisition by a deep root system can increase drought tolerance.

  相似文献   

8.
A procyanidin dimer xyloside, catechin-(4α  8)-7-O-β-xylopyranosyl-catechin, was isolated from the inner bark of Betula pendula and its structure was determined using 1D and 2D NMR, CD and high-resolution ESIMS. Interestingly, the 7-O-β-xylopyranose unit was found to be present in the lower terminal unit of the dimer. In addition to this procyanidin dimer xyloside, an entire series of oligomeric and polymeric procyanidin xylosides was detected. Their structures were investigated by hydrophilic interaction HPLC–HRESIMS. Procyanidin glycosides are still rarely found in nature.  相似文献   

9.
Tytti  Sarjala  Seppo  Kaunisto 《Plant and Soil》2002,238(1):141-149
Potassium and free polyamine concentrations in the leaves of silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh) were followed during three successive growing seasons 1996, 1997 and 1998 in order to define K deficiency levels.The highest foliar K concentrations were found in June. In August, the K concentrations were lower and remained quite stable in Betula pendula but varied in Betula pubescens. In addition to a common diamine, putrescine, and the polyamines, spermidine and spermine, also a less common diamine and polyamine, 1,3-diaminopropane and norspermidine were found in the birch leaves. The accumulation of both diamines, putrescine and 1,3-diaminopropane, was used to define the critical levels of K nutrition in birch leaves. Foliar K concentrations below 7–8 mg g –1 DW were found to correlate with the accumulation of diamines at most sampling dates.  相似文献   

10.
To evaluate the feasibility of long-term cryopreservation of Polish provenances of silver birch (Betula pendula), the sensitivity of conditionally dormant seeds to extreme desiccation and/or the ultra-low temperature of liquid nitrogen (LN; ?196°C) was evaluated. The critical water content (WC) of desiccated seeds and the high-moisture freezing limit of seeds desiccated or moistened to various WCs and frozen for 24 h or for 2 years in LN was also determined. Germination tests revealed no critical WC for seeds [to 0.02 g H2O g?1 dry mass (g g?1)]. Seeds tolerated freezing in LN within specific safe range of WC 0.02–0.23 g g?1 (nuts). Seeds desiccated to the safe WC and stored in LN for 2 years had similar or higher germination as seeds stored at ?3°C for 2 years, depending on provenance. Therefore, long-term cryopreservation of B. pendula seeds in gene banks is feasible.  相似文献   

11.
Abstract. Net photosynthesis, photosynthetic electron transport, and leaf area density of photosynthetic units have been studied in developing, mature, and old leaves of seedlings of Betula pendula . The photosynthetic quantum yield under light-limiting conditions and the leaf area related rale of light-saturated net photosynthesis were lower in developing than in mature and old leaves. Developing leaves also had more oxygen inhibition of photosynthesis, a lower pool size of plastoquinone in the electron transport chain, a lower chlorophyll content and a lower leaf area density of photosynthetic units than mature and old leaves. The photosynthetic properties of The oldest leaves resulted partly from acclimation to shade and partly from a different ontogeny to that of younger leaves.  相似文献   

12.
13.
The atmospheric air pollutant ozone (O3) is one of the environmental stresses that induce formation of reactive oxygen species (ROS) in plants. Previously, the toxicity of O3 has been believed to be a result of ROS formation from O3-degradation. Recently, however, it has been shown that O3 induces active ROS production, which suggests that O3-responses may be mechanistically similar to pathogen-induced responses and that O3-damage could be a result of deleterious firing by the ROS of pathways normally associated with the HR. The subcellular localization of O3-induced H2O2 production was studied in birch (Betula pendula). O3 induced H2O2 accumulation first on the plasma membrane and cell wall. Experiments with inhibitors of possible sources for H2O2 in the cell wall suggested that both NADPH-dependent superoxide synthase and the cell wall peroxidases are involved in this H2O2 production. The H2O2 production continued in the cytoplasm, mitochondria and peroxisomes when the O3-exposure was over, but not in chloroplasts. The timing of mitochondrial H2O2 accumulation coincided with the first symptoms of visible damage and, at the same time, the mitochondria showed disintegration of the matrix. These responses may not be directly connected with defense against oxidative stress, but may rather indicate changes in oxidative balance within the cells that affect mitochondrial metabolism and the homeostasis of the whole cell, possibly leading into induction of programmed cell death.  相似文献   

14.
The coordinate appearance of the bispecific NAD(P)H-nitrate reductase (NR; EC 1.6.6.2) and nitrite reductase (NiR; EC 1.7.7.1) was investigated in leaves and roots from European white birch seedlings (Betula pendula Roth). Induction by nitrate and light of both enzymes was analyzed by in vitro assays and by measuring NR- and NiR-encoding mRNA pools with homologous cDNAs as probes. When birch seedlings were grown on a medium containing ammonium as the sole nitrogen source, low constitutive expression of NR and NiR was observed in leaves, whereas only NiR was significantly expressed in roots. Upon transfer of the seedlings to a nitrate-containing medium, mRNA pools and activities of NR and NiR dramatically increased in leaves and roots, with a more rapid induction in leaves. Peak accumulations of mRNA pools preceded the maximum activities of NR and NiR, suggesting that the appearance of both activities can be mainly attributed to an increased expression of NR and NiR genes. Expression of NR was strictly light-dependent in leaves and roots and was repressed by ammonium in roots but not in leaves. In contrast with NR, constitutive expression of NiR was not affected by light, and even a slight induction following the addition of nitrate was found in the dark in roots but not in leaves. No effect of ammonium on NiR expression was detectable in both organs. In leaves as well as in roots, NiR was induced more rapidly than NR, which appears to be a safety measure to prevent nitrite accumulation.  相似文献   

15.
Leaf development and senescence were studied in greenhouse-grown silver birch ( Betula pendula Roth) seedlings over a period of 7 weeks. Prior to the experiment, leaves from 100 seedlings were marked for five sampling dates. Timing of the developmental phases was studied with biochemical analyses of total soluble protein, Rubisco protein, chlorophyll concentration and at the level of gene expression related to photosynthesis, energy metabolism, ethylene synthesis and protein degradation. During the sampling period, an initial increase in photosynthetic capacity could be seen, when expression of the Rubisco small subunit gene ( RbcS ) and Rubisco protein (EC 4.1.1.39) were examined. Down-regulation of photosynthesis, visible as a decrease in Rubisco protein and RbcS mRNA, started soon after full expansion of the leaves and processes related to senescence followed. mRNA accumulation for the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylic acid oxidase increased first during the onset of senescence. Protein degradation was observed as a loss of soluble proteins, with a simultaneous increase in the leucine aminopeptidase (EC 3.4.11.1) mRNA levels. The mRNA levels of ribonuclease-like pathogenesis-related protein 10 also increased clearly during senescence, but the mitochondrial phosphate translocator mRNA showed only a slight increase. Chlorophyll concentration of the leaves decreased after the mRNA levels of these senescence-related genes had become more abundant.  相似文献   

16.
The permeability of leaf tissue to water has been reported to increase under illumination, a response reputed to involve aquaporins. We studied this ‘light response’ in red oak (Quercus rubra L.), the species in which the phenomenon was first detected during measurements of leaf hydraulic conductance with the high‐pressure flow meter (HPFM). In our HPFM measurements, we found that pre‐conditioning leaves in darkness was not sufficient to bring them to their minimum conductance, which was attained only after an hour of submersion and pressurization. However, pre‐conditioning leaves under anoxic conditions resulted in an immediate reduction in conductance. Leaves light‐ and dark‐acclimated while on the tree showed no differences in the time course of HPFM measurement under illumination. We also studied the effect of light level and anoxia on rehydration kinetics, finding that anoxia slowed rehydration, but light had no effect either in the lab (rehydration under low light, high humidity) or on the tree (acclimation under high light, 10 min of dark prior to rehydration). We conclude that the declines in conductance observed in the HPFM must involve a resistance downstream of the extracellular air space, and that in red oak the hydraulic conductivity of leaf tissue is insensitive to light.  相似文献   

17.
Habituation and appetitive conditioning have been already described in the crab Chasmagnathus. The purpose of this work is to study whether associative learning can be obtained despite a long conditioned stimulus-unconditioned stimulus interval. Results of the first experiment show that the weakening of temporal contiguity does not prevent appetitive conditioning to occur while after a long 4-h delay, conditioning wanes completely. A second experiment was conducted, after one and three days of training respectively, confirming the above results. Though initially neutral the context trace may be still available immediately after training and for the period of two but not after 4:00 h, demonstrating a forward limit for the conditioning window. After 3 days of training, a further decrease in the exploratory activity suggested that a longer training could increase the relative weight of habituation. Conditioning and habituation seem to work as opponent processes in the crab CHASMAGNATHUS GRANULATUS: if habituation training in the box is followed by the administration of reinforcement after a short period of time, appetitive conditioning will take place. However, as this interval is increased, habituation prevails. A persistent effect of the exposure to a given environment that may underlie trace conditioning in this crab is discussed in adaptive terms.  相似文献   

18.
The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure.  相似文献   

19.
The effect of 700 μmol CO2 mol−1, 200 nmol ozone mol−1 and a combination of the two on carbon allocation was examined in Pinus halepensis co-cultured with Betula pendula in symbiosis with the ectomycorrhizal fungus Paxillus involutus . The results show that under low nutrient and ozone levels, elevated CO2 has no effect on the growth of B. pendula or P. halepensis seedlings nor on net carbon partitioning between plant parts. Elevated CO2 did not enhance the growth of the fungus in symbiosis with the birch. On the other hand, ozone had a strong negative effect on the growth of the birch, which corresponded with the significantly reduced growth rates of the fungus. Exposure to elevated CO2 did not ameliorate the negative effects of ozone on birch; in contrast, it acted as an additional stress factor. Neither ozone nor CO2 had significant effects on biomass accumulation in the pine seedlings. Ozone stimulated the spread of mycorrhizal infection from the birch seedlings to neighbouring pines and had no statistically significant effects on phosphoenolpyruvate carboxylase (PEPC) or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity in the pine needles or on PEPC activity in pine roots.  相似文献   

20.
Abstract. Seedlings of Betula pendula were grown in a controlled environment chamber at quantum flux densities of 50, 250 and 600 μmol m−2 s−1. The relationship between the flux densities of absorbed CC2 and quanta was determined for shoots of whole seedlings. Rates of both light-saturated and in situ (measured under the growing conditions) net photosynthesis were determined and the pholosynthetic quantum yields under light-limiting conditions were calculated. Anatomical leaf characteristics, chlorophyll contents and sizes and densities of the photosynthetic units (chlorophyll/P700) were determined. Chloroplasts were isolated and their rates of 2,6-dichlorophenol indophenol photoreduction were measured together with their pool sizes of the electron transport carriers plastoquinone and cylochrome ƒ.
Although acclimated to different quantum flux densities, the three birch populations showed the same quantum yield of net photosynthesis. This was approximately 0.028 in normal air (21.2 kPa oxygen) and about 0.040 when photorespiration was largely inhibited in 2.0 kPa oxygen. In addition, the in situ net photosynthesis rates were limited by the absorbed quantum flux density for low, intermediate and high light grown seedlings. It was concluded that birch acclimated to the three light regimes at different levels of organization (metabolic and anatomical). Thus, the quanta which were absorbed in situ could be transferred into chemical equivalents at an optimal and constant efficiency. The use of different reference bases for expressing rates of net photosynthesis are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号