首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of cell adhesion is an important mechanism by which Eph receptors regulate cell sorting during development. Activation of EphA4 in Xenopus blastulae induces a reversible, cell autonomous loss-of-adhesion and disruption of the blastocoel roof. We show this phenotype is rescued by Nckbeta (Grb4) dependent on its interaction with EphA4. Xenopus p21(Cdc42/Rac)-activated kinase xPAK1 interacts with Nck, is activated in embryo by EphA4 in an Nck-dependent manner, and is required for EphA4-induced loss-of-adhesion. Ectopic expression of xPAK1 phenocopies EphA4 activation. This does not require the catalytic activity of xPAK1, but it does require its GTPase binding domain and is enhanced by membrane targeting. Indeed, membrane targeting of the GTPase binding domain (GBD) of xPAK1 alone is sufficient to phenocopy EphA4 loss-of-adhesion. Both EphA4 and the xPAK1-GBD down-regulate RhoA-GTP levels, and consistent with this, loss-of-adhesion can be rescued by activated Cdc42, Rac, and RhoA and can be epistatically induced by dominant-negative RhoA. Despite this, neither Cdc42 nor Rac activities are down-regulated by EphA4 activation or by the xPAK1-GBD. Together, the data suggest that EphA4 activation sequesters active Cdc42 and in this way down-regulates cell-cell adhesion. This novel signaling pathway suggests a mechanism for EphA4-guided migration.  相似文献   

2.
Rac1 and Cdc42 are members of the Rho family of small GTPases and have been shown to induce lamellipodia and filopodia formation, respectively. This leads to changes in cytoskeleton organization and as a consequence affects cell migration. In the present work we demonstrate that endogenous Rac1 and Cdc42 interact with calmodulin (CaM) in a Ca(2+)-dependent fashion. The interaction of Rac1 and Cdc42 with CaM was shown to be direct. This novel interaction was further confirmed in platelets using co-immunoprecipitation studies. Using CaM database analysis and in vitro peptide competition assays we have identified a 14 amino acid region in Rac1 that is essential for CaM binding. The scrambled form of the peptide did not bind CaM demonstrating specificity of the predicted CaM binding region in Rac1. A similar region capable of binding CaM exists in Cdc42. Furthermore, using the optimal activation time-point for each GTPase, the role of CaM in the function of Rac1 and Cdc42 was examined. Results demonstrate that in human platelets, thrombin caused maximal activation of Rac1 and Cdc42 at ~60 s and ~25 s respectively. The potent CaM antagonist W7 abolished thrombin-mediated activation of Rac1. However, addition of W7 resulted in the activation of Cdc42 over basal and W7 did not inhibit thrombin-mediated activation of Cdc42. The less potent CaM inhibitor, W5, did not have any effect on Rac1 and Cdc42 activation. The results demonstrate that in platelets, binding of CaM to Rac1 increases its activation while its binding to Cdc42 reduces the activation of this GTPase. This suggests an important role for CaM in coordinating Rac1 and Cdc42 activation and in the regulation of cytoskeleton remodeling.  相似文献   

3.
The generation, maturation, and function of dendritic cells (DC) have been shown to be markedly compromised in the tumor microenvironment in animals and humans. However, the molecular mechanisms and intracellular pathways involved in the regulation of the DC system in cancer are not yet fully understood. Recently, we have reported on the role of the small Rho GTPase family members Cdc42, Rac1, and RhoA in regulating DC adherence, motility, and Ag presentation. To investigate involvement of small Rho GTPases in dysregulation of DC function by tumors, we next evaluated how Cdc42, Rac1, and RhoA regulated endocytic activity of DC in the tumor microenvironment. We revealed a decreased uptake of dextran 40 and polystyrene beads by DC generated in the presence of different tumor cell lines, including RM1 prostate, MC38 colon, 3LL lung, and B7E3 oral squamous cell carcinomas in vitro and by DC prepared from tumor-bearing mice ex vivo. Impaired endocytic activity of DC cocultured with tumor cells was associated with decreased levels of active Cdc42 and Rac1. Transduction of DC with the dominant negative Cdc42 and Rac1 genes also led to reduced phagocytosis and receptor-mediated endocytosis. Furthermore, transduction of DC with the constitutively active Cdc42 and Rac1 genes restored endocytic activity of DC that was inhibited by the tumors. Thus, our results suggest that tumor-induced dysregulation of endocytic activity of DC is mediated by reduced activity of several members of the small Rho GTPase family, which might serve as new targets for improving the efficacy of DC vaccines.  相似文献   

4.
《Cellular signalling》2014,26(9):1975-1984
Cytoskeletal reorganization is crucial for platelet adhesion and thrombus formation to avoid excessive bleeding. Major regulators of cytoskeletal dynamics are small GTPases of the Rho family. Rho GTPases become activated by G-protein coupled receptor activation, downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors and by outside-in signaling of integrins. They act as molecular switches and cycle between active and inactive states. GTPase activating proteins (GAPs) stimulate the hydrolysis of GTP to GDP to terminate Rho signaling. Nadrin is a RhoGAP that was recently identified in platelets. Five Nadrin isoforms are known consisting of a unique GAP and an N-terminal BAR domain responsible for the selective regulation of RhoA, Cdc42 and Rac1. Besides BAR domain mediated regulation of Nadrin GAP activity nothing is known about the regulation of Nadrin and the impact on cytoskeletal reorganization. Here we show that Nadrin becomes tyrosine phosphorylated upon platelet activation. We found Src family proteins (Src, Lyn, Fyn) to be responsible to control Nadrin GAP activity by phosphorylation. Interestingly, phosphorylation of Nadrin leads to tightly regulated Rho activation that was found to be Nadrin isoform- and (Rho) target-specific. Src-phosphorylation of Nadrin5 mediated inactivation of Cdc42 while RhoA and Rac1 became activated upon Src-mediated phosphorylation of Nadrin2. Our results suggest a critical role for spatial and temporal regulation of Nadrin and thus for the control of Rho GTPases in platelets.  相似文献   

5.
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.  相似文献   

6.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

7.
Nectins, Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules, induce the activation of Cdc42 and Rac small G proteins, enhancing the formation of cadherin-based adherens junctions (AJs) and claudin-based tight junctions. Nectins recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then activates Cdc42 through FRG, a Cdc42-GDP/GTP exchange factor. We showed here that Rap1 small G protein was involved in the nectin-induced activation of Cdc42 and formation of AJs. Rap1 was recruited to the nectin-based cell-cell contact sites and locally activated through the c-Src-Crk-C3G signaling there. The activation of either c-Src or Rap1 alone was insufficient for and the activation of both molecules was essential for the activation of FRG. The activation of Rap1 was not necessary for the c-Src-mediated phosphorylation or recruitment of FRG. The inhibition of the Crk, C3G, or Rap1 signaling reduced the formation of AJs. These results indicate that Rap1 is activated by nectins through the c-Src-Crk-C3G signaling and involved in the nectin-induced, c-Src- and FRG-mediated activation of Cdc42 and formation of AJs.  相似文献   

8.
A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKβ, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2β1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network assembly. Overall, this work defines novel key regulators and their functional roles during human EC tubulogenesis.  相似文献   

9.
Rho GTPases are critical for actin cytoskeletal regulation, and alterations in their activity may contribute to altered cytoskeletal organization that characterizes many pathological conditions, including ischemia. G protein activity is a function of the ratio of GTP-bound (active) to GDP-bound (inactive) protein, but the effect of altered energy metabolism on Rho protein activity has not been determined. We used antimycin A and substrate depletion to induce depletion of intracellular ATP and GTP in the kidney proximal tubule cell line LLC-PK10 and measured the activity of RhoA, Rac1, and Cdc42 with GTPase effector binding domains fused to glutathione S-transferase. RhoA activity decreased in parallel with the concentration of ATP and GTP during depletion, so that by 60 min there was no detectable RhoA-GTP, and recovered rapidly when cells were returned to normal culture conditions. Dissociation of the membrane-actin linker ezrin, a target of RhoA signaling, from the cytoskeletal fraction paralleled the decrease in RhoA activity and was augmented by treatment with the Rho kinase inhibitor Y27632. The activity of Cdc42 did not decrease significantly during depletion or recovery. Rac1 activity decreased moderately to a minimum at 30 min of depletion but then increased from 30 to 90 min of depletion, even as ATP and GTP levels continued to fall. Our data are consistent with a principal role for RhoA in cytoskeletal reorganization during ischemia and demonstrate that the activity of Rho GTPases can be maintained even at low GTP concentrations. Rac; Cdc42; actin; ezrin; adenosine 5'-triphosphate; guanosine 5'-triphosphate  相似文献   

10.
Epithelial intercellular junctions regulate cell-cell contact and mucosal barrier function. Both tight junctions (TJs) and adherens junctions (AJs) are regulated in part by their affiliation with the F-actin cytoskeleton. The cytoskeleton in turn is influenced by Rho family small GTPases such as RhoA, Rac1, and Cdc42, all of which constitute eukaryotic targets for several pathogenic organisms. With a tetracycline-repressible system to achieve regulated expression in Madin-Darby canine kidney (MDCK) epithelial cells, we used dominant-negative (DN) and constitutively active (CA) forms of RhoA, Rac1, and Cdc42 as tools to evaluate the precise contribution of each GTPase to epithelial structure and barrier function. All mutant GTPases induced time-dependent disruptions in epithelial gate function and distinct morphological alterations in apical and basal F-actin pools. TJ proteins occludin, ZO-1, claudin-1, claudin-2, and junctional adhesion molecule (JAM)-1 were dramatically redistributed in the presence of CA RhoA or CA Cdc42, whereas only claudins-1 and -2 were redistributed in response to CA Rac1. DN Rac1 expression also induced selective redistribution of claudins-1 and -2 in addition to JAM-1, whereas DN Cdc42 influenced only claudin-2 and DN RhoA had no effect. AJ protein localization was unaffected by any mutant GTPase, but DN Rac1 induced a reduction in E-cadherin detergent solubility. All CA GTPases increased the detergent solubility of claudins-1 and -2, but CA RhoA alone reduced claudin-2 and ZO-1 partitioning to detergent-insoluble membrane rafts. We conclude that Rho family GTPases regulate epithelial intercellular junctions via distinct morphological and biochemical mechanisms and that perturbations in barrier function reflect any imbalance in active/resting GTPase levels rather than simply loss or gain of GTPase activity. epithelium; tight junctions; paracellular permeability; Madin-Darby canine kidney cells  相似文献   

11.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

12.
In this study, we characterised the mechanisms of Rac GTPase activation in human platelets stimulated by two physiological agonists, either thrombin, acting through membrane receptors coupled to heterotrimeric G-proteins, or collagen which is known to mobilise a tyrosine kinase-dependent pathway. Both agonists induced a rapid activation of Rac that was not significantly affected by the inhibition of integrin alpha(IIb)beta(3) engagement. Using pharmacological inhibitors, we found that phospholipase C activation and calcium mobilisation were essential for platelet Rac activation by either thrombin or collagen whereas protein kinase C inhibition was without effect. In contrast to Rac, Cdc42 activation was independent of phospholipase C activation, indicating that the two GTPases are differently regulated. We also found that phosphoinositide 3-kinase was not required for Rac activation in response to thrombin but was involved in its activation by collagen.  相似文献   

13.
Cellular signaling by small G-proteins is down-regulated by GTPase-activating proteins (GAPs), which increase the rate of GTP hydrolysis. The GTPase regulator associated with focal adhesion kinase (Graf) exhibits GAP activity toward the RhoA and Cdc42 GTPases, but is only weakly active toward the closely related Rac1. We determined the crystal structure of a 231-residue fragment of Graf (GrafGAP), a domain containing the GAP activity, at 2.4-A resolution. The structure clarifies the boundaries of the functional domain and yields insight to the mechanism of substrate recognition. Modeling its interaction with substrate suggested that a favorable interaction with Glu-95 of Cdc42 (Glu-97 of RhoA) would be absent with the corresponding Ala-95 of Rac1. Indeed, GrafGAP activity is diminished approximately 40-fold toward a Cdc42 E95A mutant, whereas a approximately 10-fold increase is observed for a Rac1 A95E mutant. The GrafGAP epitope that apparently interacts with Glu-95(Glu-97) contains Asn-225, which was recently found mutated in some myeloid leukemia patients. We conclude that position 95 of the GTPase is an important determinant for GrafGAP specificity in cellular function and tumor suppression.  相似文献   

14.
The serine/threonine kinase Akt (also known as protein kinase B) (Akt/PKB) is activated upon T-cell antigen receptor (TCR) engagement or upon expression of an active form of phosphatidylinositide (PI) 3-kinase in T lymphocytes. Here we report that the small GTPase Rac1 is implicated in this pathway, connecting the receptor with the lipid kinase. We show that in Jurkat cells, activated forms of Rac1 or Cdc42, but not Rho, stimulate an increase in Akt/PKB activity. TCR-induced Akt/PKB activation is inhibited either by PI 3-kinase inhibitors (LY294002 and wortmannin) or by overexpression of a dominant negative mutant of Rac1 but not Cdc42. Accordingly, triggering of the TCR rapidly stimulates a transient increase in GTP-Rac content in these cells. Similar to TCR stimulation, L61Rac-induced Akt/PKB kinase activity is also LY294002 and wortmannin sensitive. However, induction of Akt/PKB activity by constitutive active PI 3-kinase is unaffected when dominant negative Rac1 is coexpressed, placing Rac1 upstream of PI 3-kinase in the signaling pathway. When analyzing the signaling hierarchy in the pathway leading to cytoskeleton rearrangements, we found that Rac1 acts downstream of PI 3-kinase, a finding that is in accordance with numerous studies in fibroblasts. Our results reveal a previously unrecognized role of the GTPase Rac1, acting upstream of PI 3-kinase in linking the TCR to Akt/PKB. This is the first report of a membrane receptor employing Rac1 as a downstream transducer for Akt/PKB activation.  相似文献   

15.
16.
SPECs, small binding proteins for Cdc42   总被引:1,自引:0,他引:1  
The Rho GTPase, Cdc42, regulates a wide variety of cellular activities including actin polymerization, focal complex assembly, and kinase signaling. We have identified a new family of very small Cdc42-binding proteins, designated SPECs (for Small Protein Effector of Cdc42), that modulates these regulatory activities. The two human members, SPEC1 and SPEC2, encode proteins of 79 and 84 amino acids, respectively. Both contain a conserved N-terminal region and a centrally located CRIB (Cdc42/Rac Interactive Binding) domain. Using a yeast two-hybrid system, we found that both SPECs interact strongly with Cdc42, weakly with Rac1, and not at all with RhoA. Transfection analysis revealed that SPEC1 inhibited Cdc42-induced c-Jun N-terminal kinase (JNK) activation in COS1 cells in a manner that required an intact CRIB domain. Immunofluorescence experiments in NIH-3T3 fibroblasts demonstrated that both SPEC1 and SPEC2 showed a cortical localization and induced the formation of cell surface membrane blebs, which was not dependent on Cdc42 activity. Cotransfection experiments demonstrated that SPEC1 altered Cdc42-induced cell shape changes both in COS1 cells and in NIH-3T3 fibroblasts and that this alteration required an intact CRIB domain. These results suggest that SPECs act as novel scaffold molecules to coordinate and/or mediate Cdc42 signaling activities.  相似文献   

17.
Cytoskeletal reorganization of activated platelets plays a crucial role in hemostasis and thrombosis and implies activation of Rho GTPases. Rho GTPases are important regulators of cytoskeletal dynamics and function as molecular switches that cycle between an inactive and an active state. They are regulated by GTPase activating proteins (GAPs) that stimulate GTP hydrolysis to terminate Rho signaling. The regulation of Rho GTPases in platelets is not explored. A detailed characterization of Rho regulation is necessary to understand activation and inactivation of Rho GTPases critical for platelet activation and aggregation. Nadrin is a RhoGAP regulating cytoplasmic protein explored in the central nervous system. Five Nadrin isoforms are known that share a unique GAP domain, a serine/threonine/proline-rich domain, a SH3-binding motif and an N-terminal BAR domain but differ in their C-terminus. Here we identified Nadrin in platelets where it co-localizes to actin-rich regions and Rho GTPases. Different Nadrin isoforms selectively regulate Rho GTPases (RhoA, Cdc42 and Rac1) and cytoskeletal reorganization suggesting that – beside the GAP domain – the C-terminus of Nadrin determines Rho specificity and influences cell physiology. Furthermore, Nadrin controls RhoA-mediated stress fibre and focal adhesion formation. Spreading experiments on fibrinogen revealed strongly reduced cell adhesion upon Nadrin overexpression. Unexpectedly, the Nadrin BAR domain controls Nadrin-GAP activity and acts as a guidance domain to direct this GAP to its substrate at the plasma membrane. Our results suggest a critical role for Nadrin in the regulation of RhoA, Cdc42 and Rac1 in platelets and thus for platelet adhesion and aggregation.  相似文献   

18.
BACKGROUND: Cloned-out of library-2 (Cool-2)/PAK-interactive exchange factor (alpha-Pix) was identified through its ability to bind the Cdc42/Rac target p21-activated kinase (PAK) and has been implicated in certain forms of X-linked mental retardation as well as in growth factor- and chemoattractant-coupled signaling pathways. We recently found that the dimeric form of Cool-2 is a specific guanine nucleotide exchange factor (GEF) for Rac, whereas monomeric Cool-2 is a GEF for Cdc42 as well as Rac. However, unlike many GEFs, Cool-2 binds to activated forms of Cdc42 and Rac. Thus, we have investigated the functional consequences of these interactions. RESULTS: We show that the binding of activated Cdc42 to the Cool-2 dimer markedly enhances its ability to associate with GDP bound Rac1, resulting in a significant activation of Rac-GEF activity. While the Rac-specific GEF activity of Cool-2 is mediated through the Dbl homology (DH) domain from one monomer and the Pleckstrin homology domain from the other, activated Cdc42 interacts with the DH domain, most likely opposite the DH domain binding site for GDP bound Rac. Activated Rac also binds to Cool-2; however, it strongly inhibits the GEF activity of dimeric Cool-2. CONCLUSIONS: We provide evidence for novel mechanisms of allosteric regulation of the Rac-GEF activity of the Cool-2 dimer, involving stimulatory effects by Cdc42 and feedback inhibition by Rac. These findings demonstrate that by serving as a target for GTP bound Cdc42 and a GEF for Rac, Cool-2 mediates a GTPase cascade where the activation of Cdc42 is translated into the activation of Rac.  相似文献   

19.
We have shown previously that T1α/podoplanin is required for capillary tube formation by human lung microvascular lymphatic endothelial cells (HMVEC-LLy) and that cells with decreased podoplanin expression fail to properly activate the small GTPase RhoA shortly after the beginning of the lymphangiogenic process. The objective of this study was to determine whether podoplanin regulates HMVEC-LLy migration and whether this regulation is via modulation of small GTPase activation. In analysis of scratch wound assays, we found that small interfering RNA (siRNA) depletion of podoplanin expression in HMVEC-LLy inhibits VEGF-induced microtubule-organizing center (MTOC) and Golgi polarization and causes a dramatic reduction in directional migration compared with control siRNA-transfected cells. In addition, a striking redistribution of cortical actin to fiber networks across the cell body is observed in these cells, and, remarkably, it returns to control levels if the cells are cotransfected with a dominant-negative mutant of Cdc42. Moreover, cotransfection of a dominant-negative construct of Cdc42 into podoplanin knockdown HMVEC-LLy completely abrogated the effect of podoplanin deficiency, rescuing MTOC and Golgi polarization and cell migration to control level. Importantly, expression of constitutively active Cdc42 construct, like podoplanin knockdown, decreased RhoA-GTP level in HMVEC-LLy, demonstrating cross talk between both GTPases. Taken together, the results indicate that polarized migration of lymphatic endothelial cells in response to VEGF is mediated via a pathway of podoplanin regulation of small GTPase activities, in particular Cdc42.  相似文献   

20.
The small Rho family GTPases Cdc42 and Rac1 have each been shown to function in insulin exocytosis and are presumed to function in actin remodeling and insulin granule mobilization. However, whether either GTPase is required for the mobilization phase of insulin release (second phase) and are linked in a common signaling pathway has remained unknown. Here we demonstrate that small interfering RNA-mediated depletion of Cdc42 from isolated islets results in the selective loss of second phase insulin release. Consistent with a role in this nutrient-dependent phase, Cdc42 activation was detected exclusively in response to D-glucose and was unresponsive to KCl or non-metabolizable glucose analogs in MIN6 beta-cells. Cdc42 activation occurred early in secretion (3 min), whereas Rac1 activation required approximately 15-20 min, suggesting Cdc42 as proximal and Rac1 as distal regulators of second-phase secretion. Importantly, Rac1 activation and function was linked in a common pathway downstream of Cdc42; Cdc42 depletion ablated glucose-induced Rac1 activation, and expression of constitutively active Rac1 in Cdc42-depleted cells functionally restored glucose-stimulated insulin secretion. Occurring at a time midway between Cdc42 and Rac1 activations was the phosphorylation of p21-activated-kinase 1 (Pak1), and this phosphorylation event required Cdc42. Moreover, small interfering RNA-mediated Pak1 depletion abolished Rac1 activation and glucose-stimulated insulin release, suggesting that Pak1 may mediate the link between Cdc42 and Rac1 in this pathway. Taken together, these data substantiate the existence of a novel signaling pathway in the islet beta-cell whereby Cdc42 functions as a key proximal transmitter of the glucose signal early in stimulus-secretion coupling to support the later stage of insulin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号